INVE

AX Series
Programmable Controller
Software Manual

o " B
e
- pd
= B
| Pg
- | Bg
.u gg

e
W
e
wer
L
eF
L
wr

SHENZHEN INVT ELECTRIC CO,, LTD.

AX series programmable controller software manual

Change History

No.

Change description

Version

Release date

First release

V1.0

September 2020

1. Modified the variables PLC and ErrorlD to
setError and getError in Table 4-1.

2. Updated the remarks of inTime and inDate in
Table 4-1 and Table 4-2.

3. Updated the variable definition table in A.1.1.1,
A.1.2.1,and A.2.1.1.

Vi1

June 2021

1. Added a Table 3-2 " Example of bit, byte, word,
and double word correspondence of AX series
controllers" and updated the data in Table 3-1 and
Table 3-3.

2. Updated the section 5.2, changing the "error
code" to "fault code".

3. Added the description of PC communication
configuration for Windows10 when the hardware is
connected with Mini USB cable in section 2.3.

V1.2

November 2021

AX series programmable controller software manual Preface

Preface

Thank you for using the AX series programmable controller (programmable controller for short).

This manual contains the information required to use the AX series programmable controllers. Please read this manual
carefully before using the product. Then you can fully understand the functions, performance, and system build-up, which
helps to give full play to the advanced performance.

Target audience

Personnel with electrical professional knowledge (such as qualified electrical engineers or personnel with equivalent
knowledge)

Applicable product

AX70 programmable controller
AX71 programmable controller

AX series programmable controller expansion modules

Online support

You can also obtain product documentation and technical support from INVT website:

http://www.invt.com

If the product is ultimately used for military affairs or weapon manufacture, abide by the export control regulations in the
Foreign Trade Law of the People's Republic of China and complete related formalities.

The manual is subject to change without prior notice.

http://www.invt.com/solutions/

AX series programmable controller software manual Contents

Contents

[=] = o = TR UUUPURRPPNE i
Q= 1o [A= T8 o =0 o= TSP PR SRT i

PN o] o] [Tor=T o L= o] (oo [Tox AR PRSP UPURRPP i

(O 10110110 o] o Lo] o SO PSPPSR PURPP PPN i
L7001 =T 1T TP ii
L PrOQUCT INEFOTUCTION ...ttt ettt e e e et e h e et e et e e bt e et e e et e et e e be e et e e e ne e e b s 1
1.1 AX70 series programmable CONTIOIETuiii ittt e st e e s e s e e s e e e nanes 1
O R @ Y= = PUUP T SSPPPRRRT 1

1.1.2 Product configuration and module deSCHPLONcciiiiiiiiiiiie e e e e e e e e s e e e e e e e eaes 1

1.1.3 System apPliCALION PIOCESSveeeiiirieeiiieie st e e ettt s st r e e ettt e et e e s bt e e e b r et e e ssn et e e s b e e e s asre e e e nnreeesnnneees 2

1.2 Programming platform
1.2.1 Invtmatic Studio

1.2.2 Software programming iNTEIMACEcoouiiiiiiiie ettt e e b s 3

I o o] o=] o =T | o= i [o] o HU T P OO PP PP P PPRPRPPPRR 3

P2 1= 4o IS = L (=T SRR 4

2.1 Software installation and UNINSTAIALIONeiiiiiiii e e st e e e s e e 4
2.1.1 SOFtWAIE ODTAINMING ...e.tveeeiiiee ettt ettt et e bt e e e h bt e e et et e e e b b et e e aa b b e e e et ee e e e snn e e e asbr e e e abne e e e nnnes 4
2.1.2 Software installation rEQUITEMENTSciiieiiiiiiee ettt ettt e e et e e e st e e e anteeeessnaeeeeanneeeesaneeeeennnes 4
P Rl (=T o T= g o o [P PO PSP PP PPRPPPPPR 4
2.1.4 INStAlliNG the SOTIWEAIEccieeiie ettt et e e et e s b e e e aa bt e e ann e e e e nnee 4
2.1.5 UNiINStalliNg the SOIWATEeiiiiiiieiiiiee ettt e ettt e e ettt e e ettt e e e anbe e e e etee e e s nteeeeanbreeesnneeeeenees 8

2.2 AXT0 SEries NArdwWare CONNMECTION.ccuuiieiireeee it ee ettt ettt e et e e et e st et e e asbe e e e aabe e e e s asbe e e e asbr e e e abneeesnnnreeeannreeenns 8

2.3 PC cOMMUNICAION CONTIGUIBTION.eeiiiiiiieiiiei ettt ettt e et e e s st e e ekt e s st e e e e as b et e e aabe e e e nnneeeannnreeens 9

P e (o] (=T od ol 1= T o ORI
2.4.1 Starting the programming environment
2.4.2 Creating NEW PIOJECTeiiiiiiieiteiee ettt e e e et e e ekt e s st e e s bt e e ek b et e e aab et e e s bb e e e e s be e e e asbeeeennneeesannreenns

2.5 Typical StePS Of PrOJECT WITHING ...ceeeiiiiiiiiiee ettt e ettt e e e e e sttt e e e e e e s e bbb b e e e e e e e s e anbe e e e e e e e e aannnbeeeeaeeas

2.6 Examples of program writing @and debUGQINGvveieiiiiieiii e 19
2.6.1 Adding devices
2.6.2 Writing @ function t0 handle POUcoouiiiiiii et e e e e s e eeeeeens 21
2.6.3 SEttiNG MOLOr PAIAMELEIS. ... eiiiiieiee ittt ettt ettt e e et et e s s e e e e st e e e ek b et e e aab et e e abe e e e e asbe e e e aabeeeesbneeeaannreenns 21
2.6.4 Writing MOtOr POSItIVE @GN FEVEISEeeiiiiiieiiieee ettt et e et e st e e s b e e e e s et e s sab et e e s e e e s anneeeaas 23
2.6.5 COMPIlING USEE PIrOGIAIM...cciiiiiiiiitiitte e ettt e e e e ettt e e e e e s bb ettt e e e e e s e bbb e et eeeeeaasnbeeeeeeeeaaasnbbseeeeeesaannnbneeeaeens 24
2.6.6 RUNNING MONITOT PrOGIGIMeiiiiiiiie ittt ettt ettt e e et e st e e s b e e e e bbbt e e aabe e e e s bs e e e e s be e e e anbeeeesnneeeaannneenns 25

N Ao T g [@fo T 101U T = 14T o] o B OO P PP UPPPPPPPRRN 26

SLL MOUBUSTCP ..ttt b ekt e bt e bt e bt okt e e b et ekt ekt e be e e b et e ket e be e e bn e e bt b e e nnr e 26
3.1.1 MOADUSTCP _IMASTET ...ttt ettt et e e ekt e e ea et e e s bbb e e e s et e e ab et e e nnneeesannreenn 26
3.1.2 ModbusTCP_Slave

A 1V [o [o1 11 o 1 OO PO TP PUPRRPT
3.2.1 MOODUSRTU _IMASTEEeeeiieite ittt ettt e ket e ekt e e et bt e e st et e e s b e e e et be e e e anbe e e e sbbeeesanbreeen 27
3.2.2 MOODUSRTU_SIAVEttt ettt e e e et bt e e e ab et e e s bt e e et b et e e anb et e e sbneeesannreeeans 27

3.3 EtherCAT master node...

R O\ (o] o[- o L PP PP EP PP PPPPPPRI
3.4.1 CANopen master N0Ae CONTIGUIALIONuviiiiiiiie ittt e et e e s e 30
3.4.2 Parameter configuration of CANOPEN MASTETuuiiiiiiii e e e e s nnrae e e e as 31

A MOAUIE CONTIGUIBLION ...ttt ettt et e e e et e e s b et e ek bt e e aa b bt e e e bt e e e e abbb e e e eabn e e e s anbeeeeantreeens 33

ot L U 43 To o [0 O O TP PP PP TPPPRO 33

AX series programmable controller software manual Contents

A 1T IRy o T=T=To B 1@ I g o o [0 SRR PRPR P
4.2.1 Creating high speed 1/0 module project
4.2.2 Function description Of INPUL POeiii i et e e e e e et e e e e e e e e nebeeeeaaeeeeannnees
4.2.3 Output Port FUNCLION DESCIIPLIONuuiiiie it ee e ettt e et e e e e et e e e e e s e st b e e e e e e s e e saabaeeeeaeeessnsnnees
4.2.4 High-speed 1/0 Mapping TADIEooi it 45
4.2.5 INEEITUPT INSTIUCTION ..eeiitiee ettt ettt e e e e ekt e e et e e e e e e e s et e e aab et e e e nb e e e e asnn e e e e nne e e nnnnneeennnneees 50
4.3 Digital iINPU/OULPUL MOAUIE..........oeiiiiiie e e e e e e e e e e e s e e e e e e e e e e e s bbb b et eeeesesattbeeeaeeesannsseeees 57
4.3.1 Creating a project for digital input/OUtPUt MOTUIE..........ccoiiiiiiiiie e 57
4.3.2 Variable definition QN0 USEooi ittt e e e e e ettt e e e e e e e sttt e e e e e e e nebaeeeaaeeeeannenees 58
4.4 Analog iNPUL/OULPUL MOAUIE..........uiiiiie et e e e e e e e e e e s e et b e e e e e e s e s aabbeeeaeesesaabbaeeeeeessnnnseeees 58
4.4.1 Creating a project for analog inpPuUt/OUtPUL MOTUIEcccviiiiiiiiiiiiee e 58
4.4.2 Variable definition QN0 USEooi ittt e e e e e ettt e e e e e e e e a s e et e e e e e e e nnbeeeeaaeeeeannnnees
4.5 TEMPEIALUIE MOGUIEoeiiiiiiiiiiiei et e ettt e e et e e e e e et e e e e e e e s e bbb aseeeeeeseasaasseeeeeeeaasasbaeeeeeeeeantsaaseeeeeessnsreees

4.5.1 Creating a project for temperature module
4.5.2 Variable definition and use
4.5.3 TEMPEIAUIE MOUUIEttt e e e e e e e e e e e et b e e e e e e e easateaeeeeeesasatbaeeeeeeseaasbaaeeaaeeasnnssenees
4.6 COMMUNICALION MOGUIEeiiiiiii ettt e e a bt e e ettt e e b et e e e a bt e e e ke et e e ane e e e asbn e e e anre e e e nanes
4.6.1 DIigital INPUL MOTUIE ..ottt ettt e st e e s b e e e st e e e e bn et e s ann e e e e snreees
4.6.2 Digital OUIPUE MOAUIEeeiiiiie ettt e st e e e sttt e e e sttt e e e enee e e e ss bt e e e ebteeeeanneeeesnnneeas
4.6.3 ANAl0G INPUE MOTUIEeeeieeee ettt et e e st e e e s bt e e es bt e e e b n e e e nnnn e e e snnree s
4.6.4 ANalog OULPUL MOGUIEeeiiiiie ettt et ettt e e et e s st e e es b r e e e e b e e s annn e e e nnnree s
4.6.5 TEMPEratUre MOTUIEeeiiiiiiie ettt e e ettt e e ettt e e s et e e e aste e e e sttt e e e aneeeeeantbeeeaseeeeeanneeeesnnneeas
4.7 Priority setting of each module (recommended VAIUE)cuiiiiiiiiiiiiiie et 74
o ST 1] [0 o (o] £ T P TP OT PP PPPPPPTPI 74
4.7.2 Configuring sub-device DUS CYCIE OPLIONSccoiiiiii ettt e e sareeas 75

Do oLl B - Vo [g o] 1 P T PP P PP PP PP PPPP

Lo I =T 1 T o [To%= (o PRI
5.1.1 System and bus fault indicator
5.1.2 High-speed input/output indicator

L2 - T 1 oo T [P TPPRI

6.3 PrOGIAM EXECULIONeiiiiiiiiiiee ettt ettt e e oo ettt e e oo e s s st b ettt e e e e e o a bbb et e e e e e e ean bbb ee e e e e e e s e nbbe b e e eeeeeaannbbneeeeeas 83
6.4 TASK EXECULION LY. ...t ee ettt eite ettt ettt ekt e e et e e et e e ek et e e ab et e e e R b et e e ek et e e abe e e e e n bbb e e e bt et e s e nne e e s nne s 86
SRS - o] (o111 2T PP U T PP PTPPPTP 87
6.6 Operation of MUILIPIE SUDPIOGIAIMSeiiiiiiiiiiii et e e e e e et b e e e e e e s e bbb e e e e e e e e e nneraeeeeeas 90
7 EtherCAT BUS MOTION CONTIOL.....uiiiiiiiiieiii ettt e e bt e et e e s b e e e et et e e st e e snbr e e e ann e e e e nnnes 92

7.1 EtherCAT OPEration PrINCIPIEcoiuieieiiiite ettt ettt e bt e e s b e e ek b et e e aab et e e s b e e e e bt e e e s annneeennnneeas 92

7.1.1 ProtoCOl INtTOTUCTIONciiiiiiiiiiiiie ittt e e st e e s e e st e e s ssr et e e s e e e s aeneee e 92

7.1.2 Work counter WKC

7. 1.3 AAArESSING MOUE ..ottt et e e ettt ookt e e e bt e e ek b et e e aa b et e e s bbb e e e s be e e e anbe e e e nnneeeaannneeenas

7. 1.4 DISHOUIEA ClOCKS ...ttt et e s e e et e e s et e e s e e e s nenre e e e

7.1.5 EtherCAT Cable rEAUNTANCYccoiiiiiieiiiiieeiiee ettt ettt et e st e e sttt e e s e e e s nneeas 100
7.2 EtherCAT communication mode

7.2.1 Periodic process data COMMUINMICALIONueiiiiiiiiiiiiiiie ettt e e e et e e e e e s e e e e e e e e s anbbbeeeeaeeeanneneees 100

7.2.2 Non-periodic mailbox data COMMUNICALIONviiiiiiieiiiiie e 103
7.3 EtherCAT State MEACKINEoiiiiiii ittt et e et e s b et e e e s b et e e et bt e e s sbe e e e anbr e e e anbreeennnes 104
7.4 EtherCAT servo drive controller application ProtOCOL............oiiiiiiiiiiiiii e 106

7.4.1 EtherCAT-based CAN application protoCol (COE)cccuuiiiiiiiiiiiiiie ittt 106

7.4.2 Servo drive profile according to IEC 61800-7-204 (SERCOS)cuuutiiiiiiieiiiieeiiiee et 111

AX series programmable controller software manual Contents

8 Application Programming
8.1 Single axisS CONtrol........cccooiiiiiiiieiiee e

8.1.1 Single axis control programming AESCIIPLION.oiuiiiiiiiiie e e e 116
8.1.2 MC function blocks commonly used for single-axis CONtrol............ccooiiiiiiiiiiie i 116
8.2 Cam SYNCHIONIZALION CONIOL.........oiiiiiiiiiii et e et e e et e e s e e e anr e e e e e e e s nnes 117
8.2.1 Periodic mode Of the Cam tabIe.........oooi e e e e 118
8.2.2 Input Method Of CAM TADIE...........iiieiee e e e e e e e e st e e e e e e e e s rasrreees 119
8.2.3 Data structure of Cam tableooiii e a e 119
8.2.4 CAM table reference and SWILCHooo i e e e e 120
Appendix A FUNCLioN MOdUIE COMMANGoiiiiiiiiiiiee et e e e e e e e e et e e e e e e s s st aeeeaeeessebaereaeaaeaaanes 121
A.1 ModbUSRTU COMMANT IDFAIYttt e e e e ettt e e e e e e tbe et e e e e e e s annbbeeeeaeeesannnneeaaaeeaannns 121
A.1.1 Definition and use of ModbusRTU master command library variablescccoooviinie e 121

A.1.2 Definition and use of ModbusRTU slave library variables..............ccccoiiiiiiiic e

A.2 ModbUSTCP COMMANG lIDFANYot e ettt e e e e e ettt e e e e e e s annbbereeaeeesannnnneeaaaeeaannns
A.2.1 Definition and use of ModbusTCP master command library variables
A.2.2 Definition and use of ModbusTCP slave command library variables..............cccocvvieiiiiiiiiiiiece e,
A.3 CMPHSIO_C lIBrary deSCHPTION.oeiiieiei ittt e et e e et e s st e e sab et e e abb e e s anr e e e e nnree s
PN J0 R O 1U 1 (=T o | PP P PP ETPT PP
A.B.2 LAIChVAIUE _HP ... ettt e e e e e s et e e e e e e e s et b b aaeeeeeesatbbaeeeeeeesansaraaeeaeeesaanes
ALB. B PIESEIVAIUE _HP ...ttt e et e e e e
A.3.4 PUISEWIAtNMEASUIE_HP ...ttt e e e e e e e
A.3.5 SetComparelnterruptParam_HP...........oiii e e e e e e e e e e
A.3.6 TIMINGSAMPING_HP ekt e et e st e e et et e e nb et e e anb e e e e enr e e e s nnes
A.3.7 CompPAareSINGIEVAIUE _HPoiiiiieeee ettt e s e e
A.3.8 COMPArEMOIEVAIUE _HP ...ttt e e ettt e e et e e et e e et e e e enbeeeesntteeeeneeeesnnes
ALB.9 GEEVEISION_HP ...ttt et et e ekt e e st e e et e e e bt e e e e e
A.3.10 ZPphase_ClEArPUISE_HP..........ooiiiiiieiiit ettt e e e e e s s s e e e s
A.3.11 Zphase_Compensate_HP
APPENTIX B PrOJECT INSTANCE. ..ottt ettt e e et e e h e e e e aa b et e e e b et e e s s b e e e e asbr e e e annne e e e nanee
B.1 Controller and Goodrive20 Series VFD Configuration EXamplecoocviiiiiiiiiiiiicicc e
B.2 Controller and DA200 Series Servo Drive Configuration EXamplecccueiiiiiiiiiiiiieeee e

AX series programmable controller software manual Product Introduction

1 Product Introduction

1.1 AX70 series programmable controller
1.1.1 Overview

The AX70 series programmable controller is a high-performance programmable controller designed with a modular
structure to provide users with intelligent automation solutions. It adopts IEC61131-3 programming language system and
supports six standard programming languages: IL, LD, FBD, ST, SFC, and CFC. High-level motion control functions such
as electronic cams, electronic gears, synchronous control, and positioning can be realized through EtherCAT bus.
Supporting 200 kHz high-speed I/O, the programmable controller can realize motion control functions such as linear
interpolation and circular interpolation.

The programmable controller is rack-mounted. Each rack can embrace 16 functional extension modules, including digital
input/output modules, analog input/output modules, temperature modules and communication modules. Remote /O
extension can be carried on via EtherCAT fieldbus.

In addition, programmable controller supports various communication interfaces such as EtherCAT, CANopen, RS485 and
Ethernet to meet the diverse application requirements of users.

1.1.2 Product configuration and module description

The AX70-C-1608P programmable controller CPU supports the following modules: power supply module, digital input
module, digital output module, analog input module, analog output module, temperature module and communication
module. The diagram of system combination is as follows.

AX series programmable controller software manual Product Introduction

Digital output
CPU module Analog
module output
module

Power supply
module Temperature
module

e e x16 e
u; - oo oo
m; 28 i 2E)1 igs)
Digital input module Anrilggljlneplﬂ
 Co——
1 x16
a - eee oo Relrlgote
s EtherCAT communication module
x125
9
°
°
.' - x16 Remote
& - eS8 e S0 1o
Figure 1-1 System integration
1.1.3 System application process
N
Y « Install the power supply module, CPU module, and expansion modules.
5 * Provide power and perform wiring for related modules.
J
)
*Turn on the power only after confirming that the wiring of each module is correct
3 and the power supply voltage meets the specifications.
: » Connect the computer that hosts Invtmatic Studio to the CPU module.
* Download the program created on Invtmatic Studio and related parameters to the
5 CPU module.
* Ensure that the nixie tube of the CPU module does not show any fault code and the
6 fault indicators of the CPU module and other modules do not turn on.)

-2-

AX series programmable controller software manual Product Introduction

1.2 Programming platform
1.2.1 Invtmatic Studio

Invtmatic Studio is a programming platform developed by Shenzhen INVT Electric Co., Ltd. It fully supports the
IEC61131-3 programming language system and six standard programming languages: IL, LAD, FBD, SFC, ST, and CFC.

1.2.2 Software programming interface
The interface of Invtmatic Studio software after creating an application project is shown as follows.

MC_Power.project - Invtmatic Studio — O X
Fle Edit View Projsct Buld Online Debug Tools Window Help Menu bar Y
O® @ & Jroé bar] < i %4 i3+ [7 | {84 | Application [Device: PLC Logic] ~ Of =

Devices v 3 x & Trace [E] PLCPRG X | 8¢ SM Drive_GenericDSP402 v‘
= {3 MC_Power - PROGRAM ELC_PRG
= @ Device (VT AX70) S R - — 0
=80 PLC Logic 3o E“;zﬁ; s SSES IVarlabIe definitions
= £} Application <
i Liorary Manager 0:MC_MoveRelative;
& pLc_pRG FRO) SetTorque:UINT:=1
= {8 Task Configuration et
= & EtherCAT Task
&) rLc_PRG 100 % | (&R
@5 Trace 1 -
‘3 HIGH_PULSE_IO
MC_Power_0(

= EtherCAT_Master_SoftMotion (EtherCAT Maste| | — .
Axis:= SM _Drive_GenericDSP402,
= (fJ ™wT_DA200_171 (DA200-N EtherCAT(CoE;

5 Enable:= ,
M4 SM_Drive_GenericDSP402 (SM _Drive, PRequlatoron:= , Program call

‘3 SoftMotion General Axis Pool bDriveStart:=
Status=> ,);

Device pa nel 1 MC_MoveRelative_0(

rive GenericDSP402,

iC_Power_0.Status,

< >
POUS v 2 x
=[5 Mc_Power =

B Project Settings

POU panel
§ 100 % (R

Messages - Total 0 error(s), 0 warning(s), 0 message(s) |Message bar -2 x ‘
=IO EOIET [0 warning(s) |o 0 message(s) | X ¥

Description Project Object Position

Lastbuid: € 0 ® 0 Precompile \/] Project user: (nobody))

Figure 1-2 Invtmatic Studio software application engineering interface

1.3 PLCopen specification

Founded in 1992, PLCopen is a vendor- and product-independent worldwide association. One of the core activities of
PLCopen is focused around IEC 61131-3, the only global standard for industrial control programming. A standard
programming interface allows people with different backgrounds and skills to create different elements of a program
during different stages of the software lifecycle: specification, design, implementation, testing, installation and
maintenance. Yet all pieces adhere to a common structure and work together harmoniously. The standard includes the
definition of six programming languages: Continuous Function Chart (CFC), Sequential Function Chart (SFC), Instruction
List (IL), Ladder Diagram (LD), Function Block Diagram (FBD) and Structured Text (ST). Via decomposition into logical
elements, modularization, and modern software techniques, each program is structured, increasing its re-usability. For
programmers, the programming technology based on IEC61131-3 can be widely used in the entire industrial control field.

Invtmatic Studio programming platform used in AX series programmable controller fully supports the PLCopen
specification and allows users to reference many standard function libraries. The high-level language programming
approach makes it easy for controller manufacturers and users to develop their own proprietary function blocks and
instruction libraries and to borrow existing similar control programs to form industry-specific "process packages", which
can significantly improve user programming efficiency.

AX series programmable controller software manual Getting Started

2 Getting Started

2.1 Software installation and uninstallation
2.1.1 Software obtaining

INVT AX series programmable controller user programming software contains Invtmatic Studio platform, installation files
and related reference materials. You can get them by the following ways:

< Visit INVT website (www.invt.com) and go to Support > Download > Software to download the software installation
package for free.

< Obtain software installation CDs from all levels of INVISTA distributors.

2.1.2 Software installation requirements

You can install the software on a computer or desk:

< Installed with Windows XP/ Windows 7/ Windows 8/ Windows 10 operation system
< CPU clock speed: 2GHz or higher

< Memory: 2GB or higher

< Available hardware space: 5GB or higher

2.1.3 Preparing

If it is the first time to install Invtmatic Studio, check whether your computer meets the software installation requirements. If
yes, you can install it directly.

If you want to install the latest version of Invtmatic Studio, check the version information about the installed software by
choosing Help > About. If it is not the latest version, you can upgrade the software using the online upgrade method.

About =X=)

=

Invtmatic Studio |

Invtmatic Studio v1.0.2 l

Copyright © 2002~2020 by INVT company. All rights reserved.

|
Close

Figure 2-1 Version information
2.1.4 Installing the software

1. Locate the installation file storage path, and double-click Invtmatic Studio Setup 64 V1.0.2.exe.

The installation starts. See the following figure.

AX series programmable controller software manual Getting Started

F
Invtmatic Studio V1.0.2 - InstallShield Wizard
.

Sl Invimatic Studio V1.0.2 Setup is preparing the Installshield
B B \Wizard, which will guide you through the program setup process.
Please wait.

Extracting: Invtmatic Studio Setup 64 V1.0, 2. msi

-— - ‘|

Figure 2-2 Installation preparation

2. When the dialog box shown in the following figure appears, click Next.

Welcome to the InstallShield Wizard for
Invtmatic Studio V1.0.2

The InstallShield(R) Wizard will install Invtmatic Studio V1.0.2
on your computer. To continue, dick Next.

WARNING: This program is protected by copyright law and
international treaties.

| <gack |[Next> §[Cancel |

Figure 2-3 Installation wizard

3. Then the license agreement dialog box appears. Select | accept the terms in the license agreement, and then
click Next.

-5-

5.

4.

AX series programmable controller software manual Getting Started

Please read the following license agreement carefully.

License Agreement

for the usage of a Invtmatic Studio Software or
Invtmatic Studio Software Package

General Terms of License (End User License Agreement) for the
supplied Software. Please read this Software User Agreement carefully
before using the supplied Software. Downloading or installation of the

Software constitutes recognition by the customer of the conditions of
this Agreement.

@) [accept the terms in the license agreement
(7)1 do not accept the terms in the license agreement

InstallShield

| <Back || mNext> || cancel

Figure 2-4 License agreement

Set the software installation path, and click Next.

Destination Folder

Click Mext to install to this folder, or dick Chanage to install to a different folder.

’ Install Invtmatic Studio V1.0.2 to:
C:\Program Files\Invtmatic Studio,

Installshield

| <Back || Mext>

e ——
e X T T 7T

Figure 2-5 Installation path

The installation component selection interface appears. Select an installation option. If you have no special
requirement, keep the default selection, and click Next.

-6-

AX series programmable controller software manual

Getting Started

Chooze the setup type that best suits your needs.

Flease select a setup type.

All program features will be installed. (Requires the most disk
space.)

Choose which program features you want installed and where they
will be installed. Recommended for advanced users.

Inztallshield

<Back | Next>

Figure 2-6 Installation type
6. When the following interface appears, click Install.

Invtmatic Smdiﬂ.ﬂ

Ready to Install the Program

The wizard is ready to begin installation.

Click Install to begin the installation.

If you want to review or change any of your installation settings, dick Back. Click Cancel to
exit the wizard.

InstallShield

<Back || Instal

Figure 2-7 Start installation

7. Aninstallation progress bar appears. Click Finish when the installation is completed.

-7-

AX series programmable controller software manual Getting Started

allShield Wizare

Installing Invtmatic Studio V1.0.2 - q
-
The program features you selected are being installed. L:\ =

Please wait while the Installshield Wizard installs Invtmatic Studio V1.0.2,
This may take several minutes,

Status:

Installshield

< Back Mext >

Figure 2-8 Installation progress

allShield Wizare

Installing Invtmatic Studio V1.0.2 - q
L]
The program features you selected are being installed. L:\ “

Please wait while the InstallShield Wizard installs Invtmatic Studio V1.0.2
This may take several minutes.

Status:

Installshield

Figure 2-9 Installation complete
2.1.5 Uninstalling the software

Uninstall Invtmatic Studio by using the standard software uninstallation method of a Windows system. The procedure is as
follows:

1. Shut down Invtmatic Studio running programs, including the backend running program.
2. Enter the control panel, find and right-click Invtmatic Studio, and click Uninstall.

3. Wait until the software is uninstalled.

2.2 AX70 series hardware connection

The hardware connection between an upper computer and programmable controller:

-8-

AX series programmable controller software manual Getting Started

Method A: Using Mini USB cable

Method B: Using LAN network cable

STORRUN

I o
-————— el =3 > = 1
] o°_| i
I °
I
I i °
B H
4 i
£ gg x
A £|30 is=IE
T Tl EAE o s |
L= 1)
| L] ® =
| 2 \
= S —)

Figure 2-10 Hardware connection diagram
2.3 PC communication configuration

® |f the hardware is connected with a LAN network cable, ensure that the IP address of the PC and the IP address of
the controller are in the same network segment. The factory default IP address of the AX series is 192.168.1.10, so
the IP address of the PC should be set to 192.168.1.xxx. (xxx means any integer value in the range of 1 - 254 except
the end address of the controller IP).

F F
[Local Area Connection 2 Properties u Internet Protocal Version 4 (TCP/IPv4) Properties M
- -
Networking | Sharing Ger&al
Connect using: ‘fou can get IP settings assigned automatically if your network supports
X thiz capability. Otherwise, you need to ask your network administrator
LF Intel(R) Ethemet Connection (4 1213-LM for the appropriate IP seéﬁngs.
(=) Obtain an IP address automaticall
This connection uses the following tems: _
“ (@) Use the following IP address:
g\ﬂ\dware Bridge Protocol -
ngS Packet Scheduler IP address: 182 168 . 1 .20
gﬁle and Printer Sharing for Microsoft Networks — Subnet mask: 255 255 .255 . 0
oiemet Protacol Ver & (JCF/IPyE]
1
Intemet Protocol Ve 5 Default gateway:
1 bl LnK-Layer opolog ovVeny IViapper fODnVer
i Link-Layer Topology Discovery Responder - Obtain DNS server address automatically

4 1 | »

(@) Use the following DNS server addresses:

Uninstall Preferred DNS server:

Description
Transmission Contral Protocol/Intemet Protocol. The default

wide area network protocol that provides communication
across diverse interconnected networks.

Alternate DNS server:

[validate settings upon exit

[ok][cameel | [ox][cancel |

Figure 2-11 PC communication configuration for LAN network cable connection
® |f the hardware is connected with Mini USB cables, configure the PC as follows.
When the PC runs Windows7:

< Install USB drive

1) In Computer Management window, select Device Manager, right click the RNDIS/Ethernet Gadget device
and select Update driver.

-0-

AX series programmable controller software manual

Getting Started

<&

MNetwork adapters
H Aventail VPN Adapter

‘7‘ Intel(R) Dual Band Wireless-AC 8265

‘7‘ Intel(R) Ethernet Connection (4) 1219-LM

VMware Virtual Ethernet Adapter for ViMnetl
VMware Virtual Ethernet Adapter for VMnetd

Other devices

/7, RNDIS/Ethernet Gadgs+_|

- ? Ports (COM & LPT) Update Driver Software...
b 2} Processors Disable

- [&# Sensor /0 devices

b -% Sound, video and game
> | Ml System devices Scan for hardware changes
b i Universal Serial Bus contr

[
2

Uninstall

Properties

m

Launches the Update Driver Software Wizard for the selected device.

Figure 2-12 RNDIS/Ethernet Gadget

2) Select Browse my computer for driver software > Let me pick from a list of device drivers on my
computer > Network adapter > Microsoft Corporation > Remote NDIS Compatible Device, and then

click Next.

@ [Update Driver Software - RNDIS/Ethernet Gadget

|

Select Network Adapter

-, installation disk for this feature, click Have Disk.

[Click the Network Adapter that matches your hardware, then click QK. If you have an

Manufacturer “ || Metwork Adapter:

Mirrasoft [Z]Remote NDIS based Internet Sharin
Microsoft Corporation [5 Remote NDIS Compatible Device
FMotorela, Inc.

I ME S
1 | 1 | "

Device

Tell me why driver signing is important L\\s

El This driver is digitally signed.

Figure 2-13 Select driver software

3) After the installation, start the controller and connect it to the PC with a Mini USB cable. The USB driver is

displayed in the computer device manager.

> -Ba Monitors
. Metwork adapters
----- L Aventail VPN Adapter
----- l_-'l" Intel(R) Dual Band Wireless-AC 8265

NE Intel(R) Ethernet Connection (41 1219-L M
----- ¥ RMNDIS/Ethernet Gadget #2
=it fvhware Yirtaat-Ethrermet-Freapter-for ViMnetl
----- uF Vhware Virtual Ethernet Adapter for ViMnetd
- JZ' Ports (COM & LPT)
>) Processors
- [Sensor /O devices

Figure 2-14 Install the driver
Configure USB IP address

1) Go to Control Panel > Network and Internet, right click Local Area Connection of RNDIS and select
Properties. In the Properties window, select Internet Protocol Version 4 (TCP/IPv4).

-10-

AX series programmable controller software manual Getting Started

= = - .]
e [,'5] Local Area Connection 4 Properties u
- Search Network Connections yel -
Networking | Sharing
= this connection » B~ O @
Connect using:

L—'. Local Area Connection 4

S Unidentified network B Disable “-1." RNDIS/Ethemet Gadget H2
- @ RMDIS/Ethernet Gadget £2 Sets

et ."' Wireless Metwork Connection Diagnose
Koo

-
o n Mot connected

o R Intel(R) Dual Band Wireless-AC ® Bridge Connections This connection uses the following items:
Create Shortcut g\-’l\-‘lware Bridge Protocol ~
Delete gOoS Packet Scheduler
B Rename gFile and Printer Sharing for Microsoft Networks
& |tamet Prot I\rminE{'FFDIDn}
&l‘ Prop\e; =
4 | 1] 3
Description

Transmission Control Protocol/Intemet Protocol. The default
wide area network protocol that provides communication
across diverse interconnected networks.

[ok |[Cancel

Figure 2-15 Select local area connection of RNDIS

2) Configure the IP address on network segment 192.168.2.xxx, in which xxx is within 1-255. Click OK to
complete the IP address configuration.

Internet Protocol Version 4 (TCP/IPv4) Properties &Ig

General

‘fou can get IP settings assigned automatically if your network supports
this capability. Otherwise, you need to ask your network administrator
for the appropriate IP settings.

() Obtain an IP address automatically

(@) Use the following IP address:

IP address: 192 .188 . 2 . 100

Subnet mask: 255 . 255 .255 . 0| %
Default gateway:

Obtain DNS server address automatically
@) Use the following DNS server addresses:

Preferred DNS server:

Alternate DNS server:

[validate settings upon exit
[OK] [Cancel] !

Figure 2-16 IP address configuration

When the PC runs Windows10:

< Install the driver

kindle_rndis.inf_amd64 is the USB driver file.

1) Right-click the file “5-runasadmin_register-CA-cer.cmd” and select Run as administrator.

-11-

AX series programmable controller software manual

Getting Started

nf_amdgd » rndis.inf_amdéd

Print
- ¥ FRun as administrator
&3 Marne [-
T-Zip
] 1-create_CA.crmd 3 CRC sH&
-] 2-make_pfr.cmd Y[Edit with Notepad-++
| 3-build_cat.crnd
=| 4-sign_cat.cmd " Windchill (*
| %] 5-runasadmin_register-CA-cer.cmd | 3
5| kindle_rndis.inf 112 Share
— kindle_rndisamdfd. cat 3 . : :
=] MobileRead-CodeSigning- Ch.cer E Scan with OfficeScan

2) Press any key.

ad Forums, 0U=Na

ad Forums, OU=MN:

3) Connect the computer and the PLC with a USB cable and open Device Manager.

v R7 Other devices
Bi PClDevice
4] Ports (COM & LPT)
=SB BT (kM
™= Print qu
[Processc Disable device
|

¥

Uninstall device
B Software Scan for hardware changes

i Sound, .
. Properties

-12-

AX series programmable controller software manual

Getting Started

4) Right-click the USB serial device under the Ports node and select Update driver.

B Update Drivers - USE BB iTi& & (COMBE)

How do you want to search for drivers?

—> Search automatically for drivers
Windows will search your computer for the best available driver and install it on
your device,

— Browse my computer for drivers
Locate and install a driver manually.

5) Click Browse my computer for drivers and select the driver folder.

Browse for drivers on your computer

Search for drivers in this location:

| ChUszers\AdministratorDeskto p\rndis.inf_amdﬁdhrndis.inf_amdﬁd w Browse...

[+] Include subfolders

6) Wait for the installation process completed.

B Update Drivers - Kindle USE RNDIS Device (USBMetwork enabled)

Windows has successfully updated your drivers
Windows has finished installing the drivers for this device:

[3' Kindle USE RMDIS Device (USBMetwork enabled)

The USB RNDIS item has been added to the Network Adapters node in Device Manager.

[Monitors
~v [Metwork adapters
I? Intel(R) Ethernet Connection (6] 1219-Y
I? Intel(R) Wireless-AC 9360 160MHz
I_I? Kindle USB RNDIS Device (USBNetwork enabled) |
F VirtualBox Host-Only Ethernet Adapter
I? WAN Miniport (IKEvZ)
I? WAN Miniport (IP)
I? WAN Miniport (IPvE)
I? WAN Miniport (L2TP)
I? WAN Miniport (Metwork Manitor)
I? WAN Miniport (PPPOE)
= WAN Miniport (PPTP)

-13-

AX series programmable controller software manual Getting Started

<~ Configure USB network port

1) Right-click the Network menu and select Properties.

e Local Disk (E:)
e Local Disk ()

Delete

W

|_ﬂ' Metwaork

2) Click Change adapter settings.
4~ == » Control Panel > All Control Panel ltems » Metwork and Sharing Center

View your basic network information and set u
Control Panel Home

View your active networks
_hange adapter settings

Change advanced sharing invt.cn A
settings Private network Ci

Media streaming opticns
3) Right-click the Unidentified network with “USB RNDIS” in its name, and select Properties.

.:_ LA 2
e i S 5
@2 Kindle USB RNDIS Device (USBNet.| @) Disable

Status

",

Diagnose

Bridge Connections

Create Shortcut
Delete

Rename

S (@

Properties

4) Select Internet Protocol Version 4 (TCP/IPv4) and click Configure....

Metworking Sharing

Connect using:

I? Kindle USB RMDIS Device (USBMetwork enabled)

Corfigure...

This connection uses the following tems:

v TAges #rEm it bR E ~
& Intemet thiszA s 4 (TCP/Pv4)
& Micros T e it
2 Microsoft LLDP HhisABzhIZRE

2 Intemet HhisiRdE 6 (TCP/IPVE)

2. FEEE SR E NIRRT B

2. BRI R INALLEE /0 IEERE v

A R KRR

-14-

AX series programmable controller software manual Getting Started

5) Set the IP address manually. The IP address must be in the network segment 192.168.2.x.
Internet HHY AR 4 (TCP/IPv4) Properties pd
General

You can get IP settings assigned automatically if your network supports
this capability, Otherwise, you need to ask your network administrator
for the appropriate IP settings.

() Obtain an IP address automatically
(@) Use the following IP address:

Poddess: s | 192.168. 2 |10 |
|

0
Default gateway: | 192 .168 . 2 . 1 |

Subnet mask: | 255 . 255 .255 .

Obtain DMS server address automatically
(®) Use the following DNS server addresses:

Preferred DMS server; | . . . |

Alternate DMS server: | . . . |

2.4 Project creation
2.4.1 Starting the programming environment

1. Double-click the software icon of Invtmatic Studio. The programming environment is as follows:
B Invtmatic Studic | T T T (e e

Fle Edit View Project Build Online Debug Tools Window Help \ 4
BEEI&G| o BRBX(MAGHAE AN B (BT EFR) aXN[(2=2228 | K| = |2
Devices > % X B startPage x| vﬂ
CAU: dmini: D Intitled: ject . .
] Basic operations Latest news
E) NewProject... /3 -
=~ < ° '®]
(@ Open Project... —_— =
= n s A INVESTERE cxemooomse x7sm s

Recent projects

Close page after project load
Show page on startup

[Messages -Total 0 error(s), 0 warning(s), 0 message(s)

- [© 0 error(s) [® 0 warning(s) [@ 0 message(s) | X ¥

Description Project Object Position

32 Devices [PoUs

Lastbuid: @ 0 ® 0 Precomple v/ Project user: (nobody) 9

Figure 2-17 Invtmatic Studio homepage

-15-

AX series programmable controller software manual

Getting Started

2. Inthe tool bar, select Tool > Device repository to add a device profile.

Invtmatic Studio

Fle Edit View Project Buld Online Debug | Tools | Window Help
HeE © o B X (4405 M N @ Package Manager... b = X% C
Library Repository...

[1]
[Device Repository...

&) Visualization Style Repository...
W Uicense Repository...

Seripting »
Customize...

Options...

Import and Export Options...

Device Reader...

‘ cense Manager
L

@ AT oy
@ Counter_HP
@ hsio_demo2000- W&
@ hsio_demo2000
@ PulsewidthMeasure_HP
@ hsio_demo2000
@ Bxampleol
@ Parking
@ MaterialManagement
@ MaterialManTest
& FB_Tray
@ FB_Relative_INVT
[Close page after project load i

4 Show page on startup

Messages - Total 0 esror(s), 0 waming(s), 0 message(s)

GD300-@A
SEEms—
= L “WEAE"ZEN

-
37 a)

32 Devices [[pous ~ [@ 0 error(s) [® 0 warning(s) [@ 0 messagets) | X %K

Lastbuid: @ 0 ® 0 Precomple / Project user: (nobody) Q

Figure 2-18 Add device profile

3. Inthe Device repository pop-up window, click Install.

¥ Device Repository

Location System Repository
(C:\ProgramData\Invtmatic Studio\Devices)

X

v Edit Locations...

Installed device descriptions

{Smng for a fulltext search] Vendor: | <All vendors>

v Install...

Name Vendor Version Description
+ Eﬂ Miscellaneous

+ Eﬂ Fieldbuses

+ EHMIdewces

+ (@ prcs

+ 0 SoftMotion drives

Figure 2-19 Install device

-16-

AX series programmable controller software manual Getting Started

4. From the Install device profile window, select the device profile to be installed from a local folder and then click
Open.

Install Device Description X
« v 4 « AX70 > AX70_APPV2.05.1 > AX7X v O R AXTX P

|may R =y M @

~ER EXEH

b
fiE
2t

O WPSHIE

o [*| Shenzen INVT-AX7X-CPU_1.2.04.dev... 2020/4/2 16:19 XML 378

P ouE

B =

= BR

&) 3o

¥ T

D Ex

W =H

i ()

- EEEE (D)

ol e >

IZFE(N): [Shenzen INVT-AX7X-CPU_1.2.0.4.devdesc.xml vi Sercos XML device descripti v

Figure 2-20 Install device profile
Note: All device profiles provided by INVT can be added by following the steps above.
2.4.2 Creating new project

1. Click the project creation icon 2 at the upper left corner or choose File > New Project, or directly click New Project
in the window to quickly create a project. Select the project category, template, save path and file name, as shown in
the following figure.

=] New Project ped
Categories Templates
ibrarie . B
g 5| &3] :

Empty project HMI project Standard Standard
project project w...

A project containing one device, one application, and an empty implementation for PLC_PRG |

Name [untitied2 |

Location [D:\Invtmatic Studio Project Y=

oK Cancel

Figure 2-21 New project

-17-

AX series programmable controller software manual Getting Started

2. Click OK. On the standard project setting interface that appears, select the device type and programming language.
See the following figure.

You are about to create a new standard project. This wizard will create the following
objects within this project:

A

- One programmable device as specified below

- Aprogram PLC_PRG in the language specified below

- A cyclic task which calls PLC_PRG

- A reference to the newest version of the Standard library currently installed.

Device [I.NVT AX T (Shenzhen INVT Electric Co., Lid.) V]

PLC_PRG in [Structured Text (ST) -]

Continuous Function Chart (CFC)

Continuous Function Chart (CFC) - page-oriented
Function Block Diagram {(FED)

Ladder Logic Diagram (LD)

Sei uential Function Chart iSFCi
Structured Text (ST,

Figure 2-22 Standard project setting page

3. On the configuration and programming interface, double-click PLC_PRG(PRG) to write programs. See the following
figure.
Untitled1 project” - Invimatic Studio [| B]

Fle Edit View Project Build Online Debug Tools Window Help Y
B@E E|o = & @ X | & [i3- (7 | # | Application [Device: PLC Logic] ~ ©§ X ° |®

Devices. >+ x PLC_PRG X
=5 thoteds > 1 PROGRAM PLC_PRG
= [Device (INVT AX7X) 2 VAR
= B0 PLe Logic 5| EDAR
= €} Application
() Library Manager

(%@

= (@ Tosk Contiurat

o

= & mainTask E
&) picrre
‘3 HIGH_PULSE_10
‘3 softMotion General Axis Pocl

100% |§
N i D

| Messages -Total 0 errar(s), 0 warning(s), 0 message(s) o b 2
- [© 0 error(s) [® 0 warning(s) [@ 0 message(s) | X ¥

Description Project Object Position

52 pevices [pous

Lastbuid: @ 0 (£ 0 Precomple o+ G§ Froject user: (nobody) 5]

Figure 2-23 Invtmatic Studio configuration and programming page

2.5 Typical steps of project writing

From the above example, writing a user program with MC motion control functions generally requires the following steps.
1. Application system hardware configuration

Configure network according to the main controller, expansion module, network type, servo slave node and other
hardware used.

2. User program writing

According to the control function to be implemented, write motion control with one POU (such as POU1), and write
common logic control with a POU (such as POU2).

3. Servo driver parameter configuration

Configure the objects of SDO and PDO according to the servo name in the hardware configuration and the operation
mode of the servo. Ensure that the communication objects required between the MC function block of the user
program and the servo are filled in the configuration table.

-18-

AX series programmable controller software manual Getting Started

4.

Servo motor parameter configuration

Correctly fill in the resolution of the servo motor encoder, the transmission ratio of the mechanical structure, the
characteristics of the axis movement range and other parameters, so that the displacement command of the control
object corresponds accurately to the actual displacement.

Task arrangement

Based on the real-time requirements of control, execute the motion control function POU1 in the EtherCAT task and
set the cycle to 4ms, the priority to 0; execute the common logic control POU2 in common tasks and set the cycle to
20ms, the priority to 16.

Online debugging

Connect the AX70 programmable controller to PC via LAN network correctly. Power on the programmable controller,
download and debug the user program, and eliminate user program bugs (if possible, you can connect the servo
drive system to the programmable controller and then debug. If the servo system is not available, you can set the
servo as a virtual axis; if the programmable controller is not available, you can simulate and debug the user program
on the PC to eliminate possible errors in the user program).

2.6 Examples of program writing and debugging

Here is an example of a basic servo control program to give you a first glimpse of the programming process before you go

through the principle of the programming system and the method of compiling the motion control program.

Write a simple program that allows the AX7x CPU programmable controller to implement the following functions:

The servo motor repeats rotating forward 50 revolutions, and then reversing 50 revolutions.

The programming method and steps of the routine are as follows:

1.

2.

3.

4.

Add the corresponding equipment: EtherCAT master node, servo drive, motor shaft.
Handle the motion control of the servo in the high real-time EtherCAT task cycle.
Set relevant parameters.

Write program.

2.6.1 Adding devices

1.

Add an EtherCAT SoftMotion master node and an EtherCAT network bus.

8 mc_power project - Invtmatic Studio - o X
File Edit View Project Buld Online Debug Tools Window Help
Ned & [i@ 53" (T #% | Application [Device: PLC Logic] = O L -

Devices - 0% [E] mc Pre x @ Trace "¢ SM_Drive_GenericDSP402 -

=) mc_Power - PROGRAM

v
={% Copy

X Delete

Refactoring

100 % | @@y

(3 Properties.

B iy Add Object »

T WEy add Folder..
- 'Add Device...

Update Device.
3¢ [’ Edit Object
Edit Object with...
Edit 10 mapping
Import mappings from CSV.
Export mappings to CSV..

Reset Origin Device [Device]

Simulation 100% |@ v

lesages -Total 0 errr(s), 0 waming(s), 0 message(s) A,
= [© 0 error(s) [0 warning(s) | @ 0 messagets) | X ¥

Bscription Project Object Position
Program manual

Hardware manual Lastbuld: @ 0) 0 Precomple o & Project user: (nobody) %)

-19-

AX series programmable controller software manual

Getting Started

[Bvic_Power project - Invtmatic Studio

@ Appenddevice | [nsert device

Plug deviee () Update device

String for a fultext search | vendor | <Al vendors>

Name
+ (T Miscelaneous
= (@ Feldouses.

Vendor

Version

35150

Description

EtherCAT Master....

mf
g
[
1
i

o Ethertiet/P
+ (2} HomeBBuildng Automation
e Mocbus

[Group by category [] Display anly) [Di

@ Mame:EthercAT Master Softoton
‘Vendor: 35 - Smart Software Saktions Gt

=g A
B Description: EtherCAT Master SoftMotan. .

Append selected device as last child of
Device

© (You can select another target nade inthe navigator while this window is open.)

>

Figure 2-24 Add EtherCAT master node

2. Add a servo device.

B untitled2.project* - Invtmatic Studio

File Edit View Project Bulld Online Debug Tools Window Help

- o x
A4

PFEE S i BX ANBYNIN Y706 § 8 sppicstion Device: PLC logic] - B » w R[22 3 F ¢ W w Y

Edit Object with...
Edit 10 mapping

Impart mappings from CSV...
Export mappings to CSV...

- [© 0 errorts) [# 0 warningls) [@ 1 messagets) | X ¥

Project

.

&) Visual Element Repository

B untitled2 project* - Invtmatic Studio

File Edit View Project Build Onliine Debug Tools Window Help

Lastbuid: © 0 ® 0

Precomple o/ G

Project user: (nobody) Q0

o
X

e || & < | @ addDevice

Name [T pamo_z62

Acton
® (o]

Plug device O

[strng for & fullext search

| vendor | <Al vendors>

Name
- [Fiedbuses.
= u¥ EtheCAT
= ¥ Save
* (3 Deta Bectoncs, Inc. - Serva Drives
(1 fm electroni - ifm electronic EtherCAT Devices
* Qapar
= [DT NOUSTRIAL

W

@ - AC Servo Driver

e DA200_FtherCAT_¥262_200313 s Device: DA2D0-N EtherCAT(CoE) Drive

[Hacboin] [cose]

‘

Figure 2-25 Add EtherCAT slave node

3. Add a servo axis.

-20-

AX series programmable controller software manual Getting Started

Untitled2.project* - Invtmatic Studio
Fle Edit View Project Buld Orline Debug Tools Window Help Y
1w d & [8y R =] T |{#8) | Application [Device: PLC Logic] - @& L -

Devices - 3% 5] PLCPRG X
= {3 thtted? | 1| PROGRAM FLC_PRG
= (@ Device T AX70 ‘;:; .
= Bl rcLoge &
- £ Appication
M0 Lirary Manager
[§] PLC_PRG (PRG)
“@reskd y Cu 100% [@&
Selgy Copy
-
@ X Delete
2 HIGH PuLsE 1
= (@ EthercaT_Mas
@ v _paz
3 softMotion Ger f=y

(=] et}

Refactoring v

Properties.

£ Add Folder...

Insert Device.
al Disable Device
POUS Update Device.

=0 uhtitedz [§ Edit Object

B Project Settings Edit Object with

Edit 10 mapping 100 % @@

Import mappings from CSV...

. LGLBWM(!MNWB) v ox
Export mappings to CSV..

+ [© 0 errors) [® 0 waring(s) | @ 1 messagets) | X ¥
[[dd sohMotion Ciat02 <] It

m— - y Project Object Position
Add SoftMotionLight CiA402 Axis

I Lastbuid: © 0 ® 0 Precomple of G Praject user: (nabody) Q

Figure 2-26 Add a servo axis

2.6.2 Writing a function to handle POU

In Invtmatic Studio programming environment, there is an EtherCAT_Task task and a MainTask task for the default task
configuration. The MainTask task contains a POU named PLC_PRG which is created at the same time as the new project
is created. The servo control program code can be written in the PLC_PRG.

Untitled1.praject” - Invimatic Studio - a x
It mE WE IR wE mE BR IE 50 & Y
= E & & 2 g [T ¥4 | Application [Device: PLC B85 ~ ©F % > |HE
& - 3 x PLC_PRG X -
=[5 Untitedl - 1 PROGRAM PLC_PRG
& 2l VAR
[Device [If‘lvTAk?k) R, 5|
T3 pciEE -
=&} Application
i
PLC_PRG (PRG) 100 % |
- B asmE =
1
% EtherCAT Task
= \% MainTask
8] pLc_PRG

"3 HIGH_PULSE_IO
=) EtherCAT_Master_SoftMotion (EtherCAT Ma:
=~ mwT_DA200_171 (INVT_DA200_171(88i
H&P SM_Drive_GenericDSP402 (SM_Dri
"3 Softhotion General Axis Pool

100 % |(&R
< >
SR O HE, OB, RIS - R x
Devices - @0z oi== e s | K K
. || I e fii-|
5% | Fous & [R{T 5 EtherCAT_Task',
BE—FRE Qom0 WREy @ REMA: GRERM) 1Y)

Figure 2-27 PLC_PRG programming page
2.6.3 Setting motor parameters

For precise control of the movement position, the programmable controller must accurately calculate the position of the
servo motor. Based on the operating characteristics and stroke characteristics of the application system, select the Axis
type and limit. Therefore, the programmable controller can calculate the feedback information of the motor encoder to
obtain the accurate position, and then avoid errors caused by the accumulated overflow of the encoder pulse number.

-21-

AX series programmable controller software manual Getting Started

Untitled2.project* - Invtmatic Studio - [u} ®
Fle Edit View Project Build Online Debug Tools Window Help
Hhed & LR - @ T |4 | Application [Device: PLC Logic] ~ O ¥ "
Devices. ~ 8 X 5] PLCPRG 'ns SM_Drive_GenericDSP402 X -
= 3 unbedz -
= @ Deviee WT A7) 2 Avis type and limits | 3 Velocity ramp type
) — -
= @l P Logc [Virtual mode | Meduo settings @ Trapezaid
S0 nteation Scaling/Mapping @ Modulo Modulo value [u]: [360.0 | O sm
(] Lirary manager Commissioning O Finite () Quadratic
= O Quadratic (smooth)
[E] PLC_PRG (PRG) SM_Drive_ETC_GenericDSP402: /O Software error reaction) -
= [#8 Task Configuration Mapping Deceleration [u/s2]: o Identification
& EthercaT Task fé}gg‘“-m-“"”"“”” Max. distance [u: o ID: 0
= & MainTask L]
&) e prs o Dynafiimits Position Lag supervision
% HIGHLPULSE 1O velod [ufs]: Acceleration [ufs?] Deceleration [u/s3) Jerk [u/s?] deactivated v
Information) 1000 1000 10000 Lag limit [u]:

= () EthercaT_Master_Softotion (EtherCAT Mastel
= (@ mwT_DA200_262 (DA200-N EtherCAT(Cof

| CEEE e

2 soft General Axis Pool
lation General Axs Virtual mode: application without actual axis added

Modulo: periodic mode, suitable for motors that rotate in one
direction and pay no attention to the cumulative position

< >
POUS .3 x Finite: linear mode, suitable for reciprocating motors such as
ERryy— = screw and linear motors.

B Project settings

<

Messages - Total 0 error(s), 0 warmingls), 1 message(s) -2 x
Devices - [© 0error(s) [© 0 warning(s) [@ 1 messagets) | X ¥
Description Project Object Position

Lastbuld: @ 0 ® 0 Precompie @ Project user: (nobody) Q

Figure 2-28 Motor parameter settings

For the reciprocating mechanism of the lead screw type, Finite is preferred as the lead screw stroke is limited and we
should know its absolute position within the stroke range.

For a single-direction shaft, Modulo is preferred as the linear mode may cause position counting overflow, resulting in

position calculation errors.

The encoder parameters of the motor (such as resolution) and the mechanical deceleration ratio of the application system
may be different. They need to be set based on the actual situation during programming, as shown in the following figure.

- o *

B untittedz project - Invtmatic Studio
Fle Edt View Project Buld Online Debug Tooks Window Help A4
DFE S oh 10 [+ T [| Application [Device: PLC Logic] = O % =
Devees. ~ & x| [5 rceRs ns SM_Drive_GenericDSP402 X -
= [unoted? - .
. Scaig
= [oewce (ot mxng) e (] Invert direction
= @il pcLoge Scaling/Magping 16210000
= 3 Application
D irary mansges Cammissioning
8 reme e o o L —
= @ resk Configuraton Mapping .
& ethercaT_Task SM_Drive_ETC_Genenictfsp402:
e A automatic mapping
= & vonrask . :)
&) ne_pme Satus s
% rae s Jo Creecbiest
= @ EercAT Mester_SoftMoton (EthercaT Masee| | 103000
= (@ DA DA20_252 (DAZ0N EtherCAT(CoE
P 54 Drive_GenercDSPa02 (SH_Drvve
% Sofvoton General e pocd Servo encoder pulse
number per turn; T . -
s
Cydie abpect Obpect number Address Type ~
< »
POUS v X
= 3 whovesz -
B Frofect Settngs
Messages - Total 0 error(s), 0 warmng(s), 0 message(s) v 8 x
Devices [0 0 erroris) [0 warning(s) [@ 0 message(s) | % ¥
Description Project Object Position
Lastbui: Q0 D0 Precompie o (8 Project user: (nobody))

Figure 2-29 Motor encoder parameter settings

The DA200 servo matching motor has two typical resolutions. The resolution of normal incremental encoders is 20bit, that
is, 1048576 pulses per revolution; and the resolution of absolute encoders is 23bit, i.e. 8388608 pulses per revolution. In
actual operation, the programmable controller sends the required number of pulses to the servo drive by EtherCAT
communication to control the servo operation. Therefore, the encoder resolution needs to be accurately set according to
the actual situation, as shown in the figure above. Take a 20bit encoder without a reducer as an example. When the servo
is commanded to run 1 unit, the servo will select 1 revolution (axis moves 360°). If the field unit in application (circled in
red in the figure above) is set to 360, the servo will select 1/360 circle (axis moves 1°) when the servo is commanded to
run 1 unit, and so on. After setting the corresponding parameters (commonly known as electronic gear ratio) according to

-22-

AX series programmable controller software manual Getting Started

the actual mechanical structure, you can input the distance command according to the physical unit of the application
system movement distance, making the control parameters intuitive and easy to understand.

Please note that only integer numbers can be entered in the fields circled in red in the figure above. Because the ratio of
the parameters in the corresponding rows on the left and right sides is effective, you can enter appropriate integer values
in the corresponding rows on the left and right sides. For example, to enable the drive lead with screw rod 6.8mm (that is,
the screw rod rotates 1 circle and the screw slide block moves 6.8mm) to move after the servo motor passes through a
mechanical deceleration mechanism with a ratio of 4:1, please set as shown in the following figure.

Scaling

[[] invert direction

116=20000 ‘ increments <=> motor turns 1
l4 l motor turns <=> gear output turns 1
|'10 ‘ gear output turns <=> units in application 68

Figure 2-30 Setting example

The dimension of the parameters circled in red can be used as the dimension of the distance in the MC control command
later. The settings of the servo driver and motor described above must be set and verified in the corresponding items of
the servo axis, otherwise the motor will not operate as expected.

2.6.4 Writing motor positive and reverse

For the motion control of the servo axis, the default synchronization period is 4ms. Users can choose according to the
actual need, as shown in the following figure.

Untitled2.project* - Invtmatic Studio - u] X
Fle Edit View Project Build Online Debug Tools Window Help
N W & & 0L 0L =Y [T {4 | Application [Device: PLC Logic] ~ O & .4
Devices. v B X | [5] PLCPRG |4 SM Drive_GenericDSP402 @ EtherCAT_Master_SoftMotion X -
=) Untited? -
= @ Device (VT AX7) Geners [Atacoali Masise/Slwes EtherCAT. ™
= 80 PLc Logic
Syne Unit Assignment. EtherCAT NIC Setting
= € Appication
) Lirary Manager Log Destination address (MAC) |FF 7 FF FF 7 4 Broadcast [Enable redundancy
(] PLC_PRG (PRG) Source address (MAC) [00-00-00-00-00-00 Browse.
= EtherCAT /0 Mapping
(&% Task Configuration Netwark Name
& EtherCAT Task
= - EtherCAT IEC Objects ® Select network by MAC O Select network by name
= & MairTask
& rc_prs Status Distributed Clock Options
2 HIGH_PULSE_IO
= () EthercaT_Master_Softobon (EthercaT Mastal| | IOrmetOn Cycle time %000 ol
=@ ™VT_DA200_262 (DA200-N EtherCAT(CoE| Sync offset 20 5
Mg 5M_Drive_GenericDSP402 (SM_Drive | [sync window monitoring
"3 SoftMotion General Axis Pool Sync window |1 s
<
POUS - 2 x
=0 tnbted? =]
B Project Settngs
< >
Messages - Total 0 error(s), 0 waming(s), 1 message(s) - x
Devices ~ [© 0 error(s) [@ 0 warning(s) [@ 1 messagets) | X ¥
Description Project Object Position
Lastbuld: @ 0 ® 0 Precompie \/ ‘4 Project user: (nobody) (%)

Figure 2-31 Servo axis motion control cycle setting

The program in the above figure is written in ST language. The relevant code is as follows:

-23-

AX series programmable controller software manual Getting Started

PLC_PRG X
1 PROGRAM PLC_ERG
VAR
MC_Bower : MC_Power;
MC_MoveRbsolute: MC MoveRbsolute;
iStatus: INT:=0
1:UINT:=1000;
END_VAR

B

CASE iStatus OF
:H
MC_Fower (Axis:= SM_Drive_GemericDSP402, Enable:= TEUE, bRegulatorn:= IRUE, bDriveStart:=IRUE ,);
IF MC_Power.Status
THEN
iStatus:=iStatus+l;
END_IF
1z
MC Movelbsolute (Axis:=SM Drive GenericDSP402 , Execute:= TRUE, Position:=200 , Velocity:=5 , Acceleration:= 5, Deceleration:= 5,);
IF MC_Movelbsolute.Done
THEN
MC MoveRbsolute (Axis:=SM Drive GenericDSP402 , Execute:= FALSE,);
iStatus:=iStatus+l;
END_IF

16| MC MoveAbsolute (Axis:=SM Drive GenericDSP402 , Execute:= TRUE, Position:=0 , Velocity:=4, Acceleration:= 5, Deceleration:= 5,);
17| IF MC MoveRbsolute.Done

= 18| EEN
= 18| MC MoveAbsolute (Axis:=SM Drive GenericDSP402 , Execute:= FALSE,):|
20| iStatus:=1;
i Ewp_IF

zz| END_CASE

Figure 2-32 ST codes

2.6.5 Compiling user program

If there is a writing error, the error type and reason will be listed in Figure 2-28. Double-click the error description, and the
cursor will jump to the corresponding program editing window to facilitate revision. After the revision, compile again until
all compilation problems are eliminated.

I8 untitled2 project* - Invtmatic Studio - o X
Fle Edit View Project Buld Online Debug Tools Window Help Y
e E & [Rt =]]'EAppHu!im‘ [Device: PLC Logic] - O X L
Devices = 3 x| [5] ACPRG s M Drive GenerkDSP402 @) EthercAT_Master_SoftHotion x -
= [3 Untted? -
& @ Devce T A0 General [Autoconfig Master/Siaves EthercAT =
= B0 pcLoge
gy o Syne Unit Assignment EtherCAT NIC Setting
D Lirary Manager Log Destination address(MAC) |Fr--FF-FF-#F 7 [A Broadcast] Enable redundancy
(8] Pc_prc pro) Source address (MAC) [00-0000-000000 Browse...
Lam EtherCAT /0 Mapping
(§8 Task Configuration Network Name
EtherCAT Task
& - EtherCAT IEC Objects @) Select network by MAC (O Select network by name
= & manTask :
& c_pRe = Distributed Clock Options
"3 HIGH_PULSE_IO
i " -
= [EthercAT_Master_Sototion (EtherCAT Mastd | | Fomation Crclating s 2 v
= (@ m™wT_paz00_262 (DA200-N EthercAT(Coe] Syne offset » %
WP SM_Drive_GenericDSP402 (SM_Drive| [sync window manitoring
"3 SoftMotion General Axis Pool syncwindow |1 2] s
< >
POUs -3 x
= [Unotedz -]
B Project settngs
< >
Messages - Total 0 error(s), 0 warming(s), 1 message(s) -8 x
Devices « [© 0 error(s) [0 waming(s) [@ 1 message(s) | % ¥ |
Description Project Object Position
Lastbuld: @ 0 ® 0 Precomple o/ & Project user: (nobody) Q

Figure 2-33 Program compilation

Finally, download the user program to the AX7x CPU module.

-24-

AX series programmable controller software manual

Getting Started

Untitled2.project* - Invtmatic Studio - x
Fle Edit View Project Build Online Debug Tools Window Help A ¢
e d & Y (=] [T % Application [Device: PLC Logic] v LY
Devices - B X [8] Pcrre #e SM_Drive_GenericDSP402) EtherCAT_Master_SoftMotion X -
= 33 novedz ad
= (@ vewce T Ax7) Geners £ Autoconfig Master/Slaves EtherCAT. ™
= Bl pcioge Sync Unit Assi
- ignment rCAT n
B tion EtherCAT NIC Setting
PR ton Destination address (MAC) {7 Broadcast] Enable redundancy
2] Puc_pre PRG) Source address (MAC) [00-00-00-00-00-00 Browse...
=@ EtherCAT /0 Mapping
{8 Task Configuration Network Name
EtherCAT Task _ .
& e EtherCAT IEC Objects (® Select network by MAC (O select network by name.
= & ManTask -
& pc pre == Distributed Clock Options
3 HIGH_PULSE IO
" =
= () EtherCAT Master Softoton (EtherCAT Mastg | | "forMacen Ordetme 4000 Sl
= [™wT_DA200_262 (DA200-N Ether CAT(CoE{ Sync offset 2 H %
WP M Drive_GenericDSP402 (SM_Drive | O svnc window monitoring
"3 Softmation General A Poal Sync window s
< >
POUs -8 %
= 3 unvoedtz I=|
B Project settings
< >
Messages - Total 0 error(s), 0 warming(s), 1 message(s) -2 x
Devices - [© 0errorts) l © 0 warning(s) lo 1 messagel(s)] X K |
Description Project Object Position
Lastbuld: @ 0 0 Precomple] Project user: (nobody) Q

Figure 2-34 User program download

2.6.6 Running monitor program

After logging in to the device through the button marked in a red square in figure 2-34, the program is running if you can
observe the actual operation of the servo or check the position value of the servo axis of the host computer. At this point,
the required servo jogging and the 2-cycle running triggering functions has been implemented, which shows the

programming process is complete.

-25-

AX series programmable controller software manual Network Configuration

3 Network Configuration

The network configuration of programmable controllers mainly includes: ModbusTCP, ModbusRTU, EtherCAT, and
CANopen.

3.1 ModbusTCP
3.1.1 ModbusTCP_Master

The number of variables that ModbusTCP can access is defined as follows:
Read coil (0x01), number of coils 1-2000 (0x7D0)

Read discrete coils (0x02), number of coils 1-2000 (0x7D0)

Read holding register (0x03), number of registers 1-125 (0x7D)

Read input register (0x04), number of registers 1-125 (0x7D)

Write a single coil (0x05)

Write a single register (0x06)

Write multiple coils (0xOF), number of coils 1-1968 (0x7B0)

R T T RS S

Write multiple register (0x10), number of register 1-120 (0x78)

ModbusTCP_Master is an important component of the ModbusTCP_Master function module. Before using the master
node, the corresponding library files must be added as follows:

® Create an application project for the ModbusTCP_Master.

® Add the library file "CmpModbusTCP_Master_1.0.0.0.library" required by this module.

3.1.2 ModbusTCP_Slave

® Create an application project for the ModbusTCP_Slave.

® Add the library file "ModbusTCP_Slave_1.1.0.0.library" required by this module.

The ModbusTCP_Slave defines the storage area that can be accessed from outside. The detailed area is as follows:

Table 3-1 ModbusTCP_Slave function codes

Function code of TCP
Address name Range Offset
master node

01 %QX 0.0-511.7 N/A

05 %QX 0.0-511.7 N/A

02 %IX 0.0-511.7 N/A

04 %IW 0-511 N/A
03/06 %MW 0-8192 5000
03/06 %QW 0-511 N/A

01 %MX 0.0-7565.7 5000

05 %MX 0.0-7565.7 5000

Table 3-1 Example of bit, byte, word, and double word correspondence of AX series controllers

%_X 195.7 - 195.0 194.7 - 194.0 193.7 - 193.0 192.7-192.0
% B 195 (8 most 194 (8 leaset 193 (8 most 192 (8 leaset

- significant bits) significant bits) significant bits) significant bits)
%_W 97 (16 most significant bits) 96 (16 leaset significant bits)
%_D 48

-26-

AX series programmable controller software manual Network Configuration

3.2 ModbusRTU

AX70-C-1608P supports two Modbus serial communications, COM1 and COM2, both of which support the standard
ModbusRTU protocol, and can be independently configured as a master or slave, supporting 2400, 4800, 9600, 19200,
38400, 57600, 115200, etc. 7 baud rates.

The number of variables that ModbusRTU can access is defined as follows:
Read coil (0x01), number of coils 1-2000

Read discrete coils (0x02), number of coils 1-2000 (0x7D0)

Read holding register (0x03), number of registers 1-125 (0x7D)

Read input register (0x04), number of registers 1-125 (0x7D)

Write a single coil (0x05)

Write a single register (0x06)

S T R SR S

Write multiple coils (0xOF), number of coils 1-1968 (0x7B0)
< Write multiple register (0x10), number of register 1-120 (0x78)

3.2.1 ModbusRTU_Master

Create an application project for the ModbusRTU_Master. There are two serial ports in AX70. To add ModbusRTU_Master
module, the corresponding library files "ModbusRTU_Masterl_1.0.0.0.library" and "ModbusRTU_Master
2_1.0.0.0.library" are needed (ModbusRTU_Masterl_1.0.0 .0.library for the hardware COML1 port and
ModbusRTU_Master2_1.0.0.0.library for the hardware COM2 port).

3.2.2 ModbusRTU_Slave

Create an application project for the ModbusRTU_Slave. There are two serial ports in AX70. To add ModbusRTU_Slave
module, the corresponding library files "ModbusRTU_Slavel 1.1.0.0.library" and "ModbusRTU_Slave2_1.1.0.0.library"
are needed (ModbusRTU_Slavel_1.1.0.0.library for the hardware COML1 port and ModbusRTU_Slave2_1.1.0.0.library for
the hardware COM2 port).

The ModbusRTU_Slave defines the storage area that can be accessed from outside. The detailed area is as follows:

Table 3-2 ModbusRTU_Slave function code

Function code of RTU
Address name Range Offset
master node

01 %QX 0.0-511.7 N/A

05 %QX 0.0-511.7 N/A

02 %IX 0.0-511.7 N/A

04 %IW 0-511 N/A
03/06 %MW 0-8192 5000
03/06 %QW 0-511 N/A

01 %MX 0.0-7565.7 5000

05 %MX 0.0-7565.7 5000

3.3 EtherCAT master node

For the parameter configuration of the EtherCAT master node, please refer to the relevant instruction in Invtmatic Studio
help documents. Here is an example of the connection between an EtherCAT master and a DA200 servo drive slave for
reference.

-27-

AX series programmable controller software manual Network Configuration

1) Creating the DA200 servo application project
Add the library file "INVT_DA200_171.devdesc.xml" required for this module.
Note:
1. The highest priority is recommended for the creation of EtherCAT Master SoftMotion projects.
2. Itis recommended that the synchronization period and the task period be set consistently at 4ms or more.

3. Create EtherCAT Master SoftMotion through a separate task. Separate the EtherCAT Master SoftMotion tasks from
1/0, analog input/output, Modbus communication and other tasks.

2) Select the motion controller device profile in the device tree, right-click on it and add the EtherCAT Master SoftMotion
as shown in the following figure.

ﬂ Add Device X

Name |EtherCAT_Master_SoftMotion

Action
(@ Append device O Update device
[string for a fulltext search | vendor | <allvendors> v
Name Vendor Version Description ~
* [Miscellaneous
= [Fieldbuses
+- <N CANbus
= bt EtherCAT
= pok Master
ﬂ EtherCAT Master 35 - Smart Software Solutions GmbH 3.5.15.0 EtherCAT Master...
35 - Smart Software Soluions GmbH ~ 3.5.15.0 EtherCAT Master SoftMotion...
+ BB EthemelAdmper v

E Group by category \:| Display all versions (for experts only) D Display outdated versions

@ mame:EthercAT Master SoftMotion A
Vendor: 35 - Smart Software Solutions GmbH

Categories: Master -
Version: 3.5.15.0 y‘
Order Number: =

Append selected device as last child of
Device

@ (You can select another target node in the navigator while this window is open.)

2 Add Device Close

Figure 3-1 Add the EtherCAT motion control master

3) Select EtherCAT_Master_SoftMotion in the device tree, right-click on it and add INVT DA200 servo drive as shown in
the following figure.

ﬂ Add Device X

Name [INVT_DA200_262

Action
@ Appenddevice (O Insert device O Update device
[string for a fulltext search | vendor [<al vendors> >
Name Vendor A
= [0 Fieldbuses
= pek EtherCAT
= pei Slave
#- [Delta Electronics, Inc., - Servo Drives
[ifm electronic - ifm electronic EtherCAT Devices
-3 vt
=- [INVT INDUSTRIAL
=4 Servo Drives
1 I\ﬂ DA200-N EtherCAT(CoE) Drive | INVT INDUSTRIAL
+ (4 Panasonic Corporation, Appliances Company - AC Servo Driver
+ B Naclbims Unoanife Nackias Casin Peiin R4 v
< >

[Group by category [] Display all versions (for experts only) [] Display outdated versions

@ Name:DA200-N EtherCAT(CoE) Drive "
Vendor: INVT INDUSTRIAL

Categories: Slave -
Version: Revision=162000000A8 i
Order Number: INVT_DA200_262 hd

Description: EtherCAT Slave imported from Slave XML: INVT_DA200_EtherCAT_V262_200313,xml Device:
DA200-N EtherCAT(CoE) Drive o

Append selected device as last child of
EtherCAT_Master_SoftMotion

@ (You can select another target node in the navigator while this window is open.)

2 I Add Device I Close

Figure 3-2 Add the DA200 servo drive

-28-

AX series programmable controller software manual Network Configuration

4) Select the INVT_DA200_171 in the device tree, right-click on it and add the motor axis (select SoftMotion's CiA 402
axis). Add the call program as shown in the following figure.

B unitiedz project - nvtmatic Studio o x
file Edt View Project Build Oniine Debug Tools Window Help v
N | &~ " - [|#8 | Applcation [Device: PLC Logic] ~ ©§

Devees T8 %] @ mePRe x| 3 HGLAISED | Cheok s Softomn | TakCofgwsin | @ Checar Tak

| PROGRAM PLC_FR
VAR

o .

D

Lsthdd 00 B0 Peoewke o G Project user: (nobody Q

Figure 3-3 DA200 servo drive application example

3.4 CANopen

CANopen is a high-level communication protocol that is based on the CAN (Controller Area Network) protocol, including
communication profile and device profile.

The communication model defines four types of messages (communication objects).
Management message

Layer management, network management and ID assignment services: such as initialization, configuration and network
management (including: node protection).

The services and protocols conform to the LMT, NMT and DBT services sections of the CAL. These services are based on
the master-slave communication mode, which means there can only be one LMT, NMT or DBT master node and one or
more slave nodes in a CAN network.

Service Data Object (SDO)

By using indexes and sub-indexes (in the first few bytes of a CAN message), the SDO enables clients to access items
(objects) in the device (server) object dictionary.

SDO is implemented through a multi-domain CMS object in CAL that allows the transfer of data of any length. The data
will be split into several messages when it exceeds 4 bytes.

The protocol confirms the service type: generating an answer for each message (two IDs are required for an SDO). SDO
request and answer messages always contain 8 bytes (meaningless data lengths are indicated in the first byte which
carries the protocol information). SDO communication has many protocols.

Process Data Object (PDO)

PDO is used to transfer real-time data from a creator to one or more recipient s. Data transfer is limited to 1 to 8 bytes (for
example, one PDO can transfer up to 64 digital I/O values, or 4 16-bit AD values).

PDO communication has no protocol defined. PDO data content is defined only by its CAN ID, assuming that the creator
and recipient s know the data content of the PDO.

Each PDO is described by two objects in the object dictionary:
1) PDO communication parameters: determine which COB-ID will be used by the PDO, transmission type, prohibition time,

and timer period.

-29-

AX series programmable controller software manual Network Configuration

2) PDO mapping parameter: a list of objects in the object dictionary that are mapped to the PDO, including their data
lengths (in bits). The creator and recipients must know this mapping to interpret PDO content.

PDO message content is predefined (or configured at network startup).

Mapping application objects to the PDO is described in the device object dictionary. If the device (creator and recipients)
supports variable PDO mappings, the PDO mapping parameters can be configured using SDO messages.

PDO can be delivered in the following modes:
1) Synchronization (by receiving SYNC objects)

Aperiodic: The transmission is pre-triggered by a remote frame or by an object-specific event defined in the device profile.

Periodic: The transmission is triggered after every 1 to 240 SYNC messages.

2) Asynchronization

The transmission is triggered by a remote frame or by an object-specific event defined in the device profile.
Predefined messages or special function objects:

® SYNC

® Time Stamp

® Emergency

® Node guarding

3.4.1 CANopen master node configuration
3.4.1.1 Master node usage process

® |Install the CANopen slave devices.

The associated CANopen slave device profile must first be installed into the system. The device profile can be a
* Devdesc.xml file or an EDS (Electronic Data Sheet) file for the manufacturer.

® Add CANbus to the device tree.

The base node of CANopen (the uppermost entry in the CANbus configuration tree) must be a CANbus object. A CANbus
can be inserted underneath the AX70-C-1608P device node. The device tree structure after adding a CANbus is shown in
the following diagram.

Devices v 3 X
= 3 Unttied2 >
= ({J Device (INVT AX7X)
= _EJ[] PLC Logic

= 1} Application
m Library Manager
|Z] PLC_PRG (PRG)
= ﬂ Task Configuration
= g} MainTask
& PLC_PRG
2 HIGH_PULSE_IO
= =
+1 [canbus (CANbus)
‘& SoftMotion General Axis Pool

Figure 3-4 Device tree structure with a CANbus
3.4.1.2 Adding CANopen management device

Under the CANbus, add a CANopen Management device, which can be used as a CANopen master. The device tree
structure after adding the device is shown in the following diagram.

-30-

AX series programmable controller software manual

Network Configuration

Devices v o X
=3 Untitled? v
= ({J Device ANVT AX7X)
=B PLC Logic
=1} Application

m Library Manager
[£) PLC_PRG (PRG)
= Ej Task Configuration
=& MainTask
&) PLC_PRG
3 HIGH_PULSE_IO
= [canbus (CANbus)
+|\'_ﬂ CANopen_Manager (CANopen_Manager) I
2 SoftMotion General Axis Pool

Figure 3-5 Device tree structure with a CANopen master

3.4.1.3 Adding CANopen slave node

Take our TC-TX105 CANopen communication card as an example. Add the slave communication card under CANopen

Manager after adding the EDS file of this communication card, as shown in the following diagram.

Devices v 3 X
=3 Untitled2 v
= i_‘ﬂ Device (INVT AX7X)
= B0 PLC Logic
=) Application

m Library Manager
|E] PLC_PRG (PRG)
= E Task Configuration
= @ MainTask
@) pLc_PRG
3 HIGH_PULSE_IO
= [{J canbus (CANbus)
= [canopen_Manager (CANopen_Manager)
(A [ec_x105 EC-TX105)
2 SoftMotion General Axis Pool

Figure 3-6 Device tree structure with a CANopen slave
The software configuration of the CANopen master is complete.
3.4.2 Parameter configuration of CANopen master
Configure Network and Baud Rate of the CANbus first.

Network: the number of CAN networks connected via the CANbus, range: 0—100.

Baud Rate: the baud rate used for transmission on the bus, the following baud rates can be set: 10000, 20000, 50000,

100000, 125000, 2500000, 500000, 800000 and 1000000.

-31-

AX series programmable controller software manual Network Configuration

[8] Pc_Pre 4 canbus x
General
! General
Log Network o [an
CANbus IEC Objects Baudrate (kbit/s) 250 ~

Status

Information

Figure 3-7 Parameter configuration of CANbus

CANopen Management is a node under the CANbus node that supports CANbus configuration through internal functions.
It is generally used as the CANbus master. The configuration page is shown in the following figure.

m CANopen_Manager X -
General
| General
Log Node ID 127 3 Check and Fix Configuration... cn“,—\
open
| CANapen 1/0 Mapping Autostart CANopen Manager Polling of optional slaves
CANopen IEC Objects Start Slaves NMT error behaviour |Restart Slave ~

[NMT start all (if passible)
Status
Guarding

Inf it
nrormation Enable heartbeat producing

Node ID 127

oRIEs

Producer time (ms) 200

SYNC TIME

[[] Enable SYNC producing [C] Enable TIME producing

COB ID [Hex) 16% |30 COBID (Hex) 16% 100

k|4

Cycle period {ps) 1000 Producer time {ms) 1000

INRECRED

‘Window length {ps) 1200

[[] Enable SYNC consuming

Figure 3-8 Parameter configuration of CANopen master

Node ID: Provides an array pair module that CANopen Manager can correspond to one-to-one, with ID values of 1-127
(must be a decimal integer).

Guarding: Heartbeat mode is a traditional protection mechanism that can be handled by the master station and the slave
station modules, different form node protection. Normally the master is configured to send a heartbeat to the slave.

Enable heartbeat producing: If this option is enabled, the master will send heartbeats continuously according to an
internally defined heartbeat time. If a new slave heartbeat function is added, their heartbeat actions will be automatically
activated and configured, i.e. the node ID is automatically set in the management configuration and the heartbeat interval
is automatically multiplied by a factor of 1 and 2. If this option is disabled, the node protection (with a life time factor of 10
and a protection time of 100ms) is activated in the slave.

Node ID: Unique identifier of heartbeat generation (1-127) on the bus.

Producer time (ms): Defines the internal heartbeat time in milliseconds.

-32-

AX series programmable controller software manual

Module Configuration

4 Module Configuration

4.1 CPU module

Please follow the steps to configure the AX70 motion controller real time and IP address.

Step 1 Create a controller Cfg project.

Add the library file CmpPIlcCfg_1.0.0.2.library required for this module to create a standard.

Step 2 Define and use variables.

Table 4-1 Variable definition

Variable Type Function Remarks
))) 0: Disabled
setEnable BOOL Time setting function
1: Enabled
)) . 0: Disabled
getEnable BOOL Time reading function
1: Enabled
- Time to be entered in
inTime ARRAY OF UINT) E.g. 14 48 56
format: hour minute second
. INPUT Date to be entered in
inDate ARRAY OF UINT E.g. 2018 12 26
format: year month day
0: Disabled
rEnable BOOL IP settings function
1: Enabled
0: Disabled
wEnable BOOL IP reading function
9 1: Enabled
new_|IP STRING Set a new IP E.g. 192.168.1.16
new_netmask STRING Set a new subnet mask E.g. 255. 255. 255.0
0: The execution of
Completion mark of time|commands is in progress.
setDone BOOL . .
setting 1: The execution of
commands is completed.
0: The execution of
Completion mark of time|commands is in progress.
getDone BOOL o i
obtaining 1: The execution of
commands is completed.
) . . See Controller Cfg error code
setError INT Configuration error sign
table
. See Controller Cfg error code
getError INT Get error sign
OUTPUT table
Read the native hour,
outTime ARRAY OF UINT [minute and second|E.g. 14 48 56
information.
R h nati r
outDate ARRAY OF UINT |Re8d the native year\. o0 15 o
month and day information.
0: The execution of
) commands is in progress.
Done BOOL Completion mark .
1: The execution of
commands is completed.
read_IP STRING IP read E.g. 192.168.1.16
read_netmask STRING Subnet mask read E.g. 255. 255. 255.0

-33-

AX series programmable controller software manual Module Configuration

Table 4-2 AX70 native time configuration

Variable Function Remarks
))) 0: Disabled
setEnable Time setting function
1: Enabled
))) 0: Disabled
getEnable Time reading function
1: Enabled

) Date to be entered in format:
inDate E.g. 2018 12 16
year month day

- Time to be entered in format:
inTime . E.g. 14 48 56
hour minute second

According to the time array in format inTime and inDate, where inTime[0] is hour, inTime[1] is minute, inTime[2] is second,
inDate[0] is year, inDate[1] is month, inDate[2] is day, enter the time (all inputs are required). After the settings, enable
setEnable to set the above time to AX70 current time.

Enable getEnable to get the real time of AX70, which is displayed in outTime and outDate arrays.

Table 4-3 AX70 local IP configuration

Variable Function Remarks
0: Disabled
rEnable IP setting function
1: Enabled
0: Disabled
wEnable IP reading function
1: Enabled
new_|IP Set a new IP E.g. 192.168.1.16
new_netmask Set a new subnet mask E.g. 255. 255. 255.0

Enter the IP and subnet mask in the required format, and then enable wEnable to set the above IP or subnet mask to the
current IP or subnet mask of AX70 after entering the setup time.

Note: The USB virtual network port is independent of the EtherNET network port, and the IP or subnet mask modified by
CmpPlcCfg_1.0.0.2.library is still the IP or subnet mask of the EtherNET network port when the device is connected with a
USB. After the IP or subnet mask modification, it will take some time for the AX70 to connect to Invtmatic Studio on the
PC.

Enable rEnable to get the IP address and subnet mask of the controller, which are displayed in the read_IP and
read_netmask strings respectively.

4.2 High speed I/O module
4.2.1 Creating high speed I/0O module project

Create the high speed 1/0 module application and add the corresponding application codes directly. Then add the
corresponding variable mapping in HIGH_PULSE_10 device tree.

HSIO stands for High Speed Input and Output. HSIO can be used for high speed counting and high speed pulse output
with three interrupt functions that can be configured as needed. HSIO contains the device profile Shenzen
INVT-AX70-CPU_1.x.x.x.devdesc, the high speed counting function block library CmpHSIO_C.library and the motion
control function block library CmpHSIO_M.library.

-34-

AX series programmable controller software manual

Module Configuration

The HSIO device profile is used to configure various functions of the high-speed 10, including input/output port function,

counter, high-speed pulse output, filter parameters, and interruption.

The high-speed counting function block library CmpHSIO_C.library contains several function blocks, such as counter
setting, count value reading, latching, preset value, pulse width measurement, timing sampling, and count value

comparison. These function blocks can be called to complete the application needed for counting.

The motion control function block library CmpHSIO_M.library is described in detail via dedicated instructions.

At present, AX70&AX71 programmable controller integrates 16-channel 200kHz pulse input and 8-channel 200kHz pulse
output which supports pulse+direction mode, FWD/REV pulse mode and quadrature pulse mode, and each port can be

configured with different functions. The configuration table is shown as follows.

Trigger Positive Pulse
Common gg and) Common
.) latching . width . . Compare
input Counting negative input [High speed pulse
. . and .. |measure . . Output
function | function . limit function | output function .
Input Z-signal -ment [Output Function
(default) . zero . (default)
port function .| function | port
function
: . . Function
Function| Function | Function value is Function Function [Function value is| Function
value is O] valueis 1 |valueis 2 3 value is 4 value is 1 2 value is 3
Common Common
X0 i COA/CWO CHON YO CHOCW/PULSO| CMPO
input output
Common Common
X1 . COB/CWWO CH1IN Y1l CHOCCW/SIGNO| CMP1
input output
Common Common
X2 . ClA/CW1 CH2N Y2 CH1CW/PULS1| CMP2
input output
Common Common
X3 i C1B/CWW1 CH3N Y3 CH1CCWI/SIGN1 CMP3
input output
Common Common
X4 i C4A/CW4 Ccoz CHOP Y4 CH2CW/PULS2 | CMP4
input output
Common Common
X5 i C4B/CWW4| Ci1z CH1P Y5 CH2CCW/SIGN2| CMP5
input output
Common Common
X6 i C5A/CW5 Cc2z CH2P Y6 CH3CW/PULS3| CMP6
input output
Common Common
X7 i C5B/CWW5| C3Z CH3P Y7 CH3CCWI/SIGN3| CMP7
input output
Common
X8 i C2A/CW2 CcoT PWCO
input
Common
X9 i C2B/CWW?2| CiAT PWC1
input
Common
XA i C3A/CW3 caT PWC2
input
Common
XB i C3B/CWW3| C3T PWC3
input
Common
XC i C6A/CW6 CHOz
input
Common
XD . C6B/CWW6 CH1z
input
Common
XE . C7A/ICW7 CH2z
input
Common
XF i C7B/ICWW7 CH3z
input

-35-

AX series programmable controller software manual

Module Configuration

Note:

R T S

X0-XF is the input port and YO-Y7 is the output port.

CW means clockwise, CCW means counterclockwise.

the positive direction. CHxZ refers to the zero signal.

PULSx means pulse.

SIGNx means the direction

A

4.2.2 Function description of input port

PWCx means pulse width check signal.

of the pulse.

CMPx means the output comparison.

CxA, CxB, and CxZ are signals of encoder A, B, and Z respectively.

CHXCW is a clockwise signal and CHXCCW is a counterclockwise signal.

CXT refers to the trigger and latch function channel and supports 4 channels, COT—C3T.

Common input and common output mean a common I/O signal, usually a switching signal.

CHxP and CHxN refer to positive and negative limit signals, with N being the negative direction and P being

The input port can be set to five functions, which are: common input function, counting function, triggering latch and

Z-signal function, positive and negative limit zero function, and pulse width measurement function. Here is the mapping

table of configuration input function corresponding to Inx_Configure parameters, where x ranges from 0 to F.

HIGH_PULSE_IO Parameters
HIGH_PULSE IO IJO Mapping
Status

Information

4.2.2.1 Common input function

If the function value is 0, the signal port is configured to be used as a common input port.

Wiring of common input ports

Find

Filter Show all

-

Variable

Mappi...

“» oo]

" Application.inl
" Application.in2
" Application.in3
"% Application.in4
"% Application.in5
"% Application.iné
"% Application.in?
"% Application.in3
"% Application.ing
"% Application.inA
"% Application.inB
"% Application.inC
"% Application.inD
"% Application.inE

"% Application.inF

Il E R R

-36-

Channel

In0_Configure
In1_Configure
In2_Configure
In3_Configure
In4_Configure
In5_Configure
In6_Configure
In7_Configure
Ing_Configure
In9_Configure
InA_Configure
InB_Configure
InC_Configure
InD_Configure
InE_Configure
InF_Configure

Address Type

24080

BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE

Unit Descri..

AX series programmable controller software manual Module Configuration

Common Input

CHA5 terminal

External wiring Port Function No Function Port External wiring

X0 Common input| 40 39 Commaon input 1

24VDC 38 ar

avDC

COM Input commaon 36 35 Input comman COM
port port

*2 Common input| 34 33 Common input X3

24vDC 32 31 ayoc

Input commaon 30 29 Input comman

COM port port

COM

¥4 Common input| 28 27 Commaen input x5

26 25

B B

ICACAM

24VDC AVDC
COM Input commaon 24 23 Input comman COM
Input pu:?:urrtnmnn Input ?:I:éi’lmnn

P & S31 bort 22 21 port 552 1;4\;[:@
—— X6 Common input| 20 19 Commaon input xT =~
— X8 Common input| 18 17 Commaon input X9 —_——
— *10 Common input| 16 15 Commaon input x1 —_——
— *12 Common input| 14 13 Commaon input x13 ———
— ®14 Common input| 12 11 Commaon input x15 ———

Configuration of common input ports
Define the variables to configure the ports and map them to the high speed pulse mapping table.
Configuration routine:
1: Configure X0 as a common input port.
in0:=0;

i Application.ind i In0_Configure Lt BYTE
2: Configure X1 as a common input port.
in1:=0;

i Application.inl i Ini_Configure SLOEE BYTE
4.2.2.2 Counting function

If the function value is 1, the signal port is configured as a counter function and all 16 input ports can be used as counter
inputs.

Counting function module can count and calculate the input pulse, and detect the position, speed and frequency. The
maximum frequency of input pulse is 200kHz.

-37-

AX series programmable controller software manual

Module Configuration

Wiring of counting function ports

Counting function (Single-end Source):

External wiring Port Function CNE Function Port External wiring
terminal Mo.
----- Ak CoA PhaseA | 4o | 39 | PhaseB coe HL..
pulse input pulse input :I_
5
= a8 a7
I com Input 36 | 35 Input com _T
common port common port
----- Ak C1A PhaseA | 54 | 33 | PhaseB cie Hk...
pulse input pulse input :I_
=
= 32 Kh|
I com Input 30 | 29 Input com _T
common port common port
- C4A PhaseA | 59 | g7 | PhaseB cap Hk.....
pulse input pulse input :I_
5
_ 26 25
CoM Input 24 | 23 Input com _T
cammon port common port
I._ Input Input
el -I'l- 581 common port 22 21 common port 532 —1
! =
......... o PhaseA | ,, [4o | PhaseB s Wil
n pulse input pulse input
......... coa PhageA 1a 17 F'has_e B CoB ||
-I'L pulse input pulse input
......... C3A PhaseA | .o [45 Phase B 03 k..
” pulse input pulse input
......... CBA PhaseA | ,, | 45 | PhaseB cep Hlme.
n pulse input pulse input
......... CTA Phage A 12 11 F'has_e B C7E ||
pulse input pulse input
Counting function (Single-end Sink):
External wiring Part Function GNS Function Part External wiring
terminal Mo.
Com Input 40 | 29 Input com
| commaon port commeon port |
= 38 | a7 =
Ak COA Phase A 2% | 35 Phase B coB _ﬂ_-l-
pulse input pulse input
Com Input 34 | 23 Input com
commaon port common port |
= 32 | 21 =
----- AL C1a |cpulseinput| 30 | 29 | PhaseB C1B J-l--l-
pulse input
CoM Input 28 | 27 Input com
| commaon port commaon port |
— 26 | 25 =
..... J-I— C4A Phas_e A 24 23 Phasle B c4B -|-|—
pulse input pulse input
Input Input
J:_: 851 common port 22 21 commaon port 852 +|
~ JL CEA Phase A 0 | 19 Phase B csB JL T
pulse input pulse input
Ak Cc2A Phase A | 45 | 47 | PhaseB L
pulse input pulse input
Ak C3A PhaseA | 45 | 45 | PhaseB L
pulse input pulse input
1 CBA PhaseA | 4, | 43 | PhaseB ceB b
pulse input pulse input
JL C7A Phase A 12 | 11 Phase B c7B JL
pulse input pulse input

-38-

AX series programmable controller software manual Module Configuration

Counting function (differential signal):

E;d_e_rnal Part Function ;NE Function Paort E;d_e_rnal
wiring terminal Mo. wiring
40 39
N Phase A PhaseB | ~np. [e

N COA* | gifferentiat + | 2 | 37 | differential + | ©"B* 2
A . Phase A Phase B] Y
B e COA differential - 3|39 differential - cos i
a4 33
N\ Phase A PhaseB | .o, |
S CWA | differential+ | *2 | *1 | diferential+ | ©1E* b
A] Phase A Phase B : W
e C1A differential - 20 29 differential - c18 prmmeet
28 27
s Phase A PhaseB | ~,o. [v
P Cahr differential + B differential + c4B+ !
AL : Phase A Phase B g oy
' e CaA differential - 24 | 23 differential - C4B et

Configuration of counting ports
Function value configuration:
Define the variables to configure the ports with data type BYTE, and map them to the high-speed pulse mapping table.
Configuration routine:
1) Configure X0 as a counting port.
in0:=1;
“§ Application.ind [Ind_Configure SLORG BYTE
2) Configure X1 as a counting port.
inl:=1;
T Application.inl i In1_Configure] BYTE

Configure other ports by analogy.

4.2.2.3 Trigger, latch and Z-signal function
If the function value is 2, the signal port is configured as trigger, latch and Z-signal functions.

The trigger function can preset count value for the counter and the rising edge of the trigger signal is valid. The preset
value will be written to the counter once the signal is valid. Normally there are three ways to write the preset value of the
counter: software writing, external trigger writing, and consistent comparison trigger writing. This product uses external
trigger writing.

The latch function can lock the counter value instantly for the upper computer to read.
The trigger and latch functions support 4 channels, COT—C3T (mapping ports X8, X9, XA, XB).

Z-signal function is used for Z clearing and Z compensation functions and Z-signal encoders generate one pulse per
revolution.

Z-signal function supports 4 channels, COT-C3T (mapping ports X4, X5, X6, X7)

-390-

AX series programmable controller software manual Module Configuration

Wiring of trigger, latch and Z-signal ports

Input function 3:(CnT wiring refers to common input; CnZ wiring refers to counting pulse input)

CM5 terminal

External wiring Fort Function No Function Port External wiring

coZ Z signal input | 28 27 | Z signal input i
L My 26 25 E |

Input commaon

3
.

Input comman

COM 24 23 Ccom
port port

551 Input commaon 29 21 Input commaon 352
port port

c2? Z signal input | 20 19 | £ signal input C3Z

Frobe signal Frobe signal

coT . 18 17 . cAT
Input Input

coT F'ru:ut.}e signal 16 15 F'ru:ut.}e signal CaT
input input

Configuration of the trigger, latch and Z-signal ports

Function value configuration: Define the variables to configure the ports with data type BYTE, and map them to the
high-speed pulse mapping table.

Configuration routine:
1) Configure X8 as a trigger and latch port.
in8:=2;
T Application.ind i In8_Configure LLoRS BYTE
2) Configure X4 as a Z-signal port
in4:=2;

i Application.ing i In4_Configure] BYTE

4.2.2.4 Positive and negative limit zero function
If the function value is 3, the signal port is configured as positive and negative limit zero function.

Only ports X0—X7 can be used as CHxP/CHxN positive and negative limit signal functions on the x channel, where x
ranges from 0 to 3. The positive limit serves to limit the positive direction, where motor movement needs to stop or reverse.
The negative limit serves to limit the negative direction, where motor movement needs to stop or reverse.

Only ports XC—XF can be used as CHyZ zero signal functions on the y channel, where y ranges from 0 to 3.

-40-

AX series programmable controller software manual

Module Configuration

Wiring of positive and negative limit zero ports

Input function 4:(CHnM and CHnP wiring refers to common input; CHnZ wiring refers to counting pulse
input)
External wiring Port Function CNS Leljrmlnal Function Port External wiring
CHON Neggtwe limit 40 39 Neggtwe limit CHAN
Input Input
38 37
COM Input commaon 36 35 Input commaon COM
part port
CH2N Nege_nwe limit 3 33 Nege_:twe limit CHIN
input input
32 k)|
COM Input commaon 30 29 Input commaon COM
port port
CHOP F‘ns!twe limit 28 27 F'Ds!twe limit CHIP
input input
26 25
COM Input comman 24 23 Input comman COM
port port
S5 Input comman 29 21 Input comman 582
port port
CH2P F'ns!twe limit 20 19 F'ns!twe limit CHIP
input input
CHOZ Home signal 14 13 | Home signal CH1Z
CH2Z Home signal 12 1 Home signal CH3Z

Configuration of positive and negative limit zero ports

Function value configuration:

Define the variables to configure the ports, and map them to the high-speed pulse mapping table.

Configuration routine:

1. Configure X3 as a positive and negative limit port.

in3:=3;

& Application.in3

2. Configure XC as a zero port.

inC:=3;

"% Application.inC

p

T

4.2.2.5 Pulse width measurement function

In3_Confiqure

InC_Configure

%583

EIFSVEE)

BYTE

BYTE

If the function value is 4, the signal port is configured as a pulse width measurement function.

PWCx is a pulse width measurement input channel x, where x ranges from 0 to 3, corresponding to ports X8, X9, XA, XB.

-A1-

AX series programmable controller software manual Module Configuration

Wiring of pulse measurement ports

Input function 5:(PWCn wiring refers to counting pulse input)
External wiring Port Function CNS Le;mlnal Function Port External wiring
f I‘ 551 Input common port 22 21 Input common port 552
PWCD Pulse mgasurement 14 13 Pulse m!aasurement PWC
signal signal
Pulse measurement Pulse measurement
PWC2 : 12 1 ; PWC3
signal signal

Configuration of pulse width measurement ports
Function value configuration:
Define the variables to configure the ports, and map them to the high-speed pulse mapping table.
Configuration routine:
1. Configure X8 as a pulse width measurement port
in8:=4;
i Application.ing i In8_Configure) BYTE
2. Configure X9 as a pulse width measurement port.
in9:=4;

i Application.ing i In9_Configure SRS BYTE

4.2.3 Output Port Function Description

The output port can be set for 3 functions: common output function, high-speed pulse output function and output
comparison function.

4.2.3.1 Common output function

If the function value is O, the signal port is configured to be used as a common output port. The following are the
parameters of Outx_Configure in the mapping table of the configuration output function, where the range of x is 0-7.

| HIGH_PULSE_IO Parameters Find Filter Show all -
| HIGH_PULSE_10 1/0 Mapping Variable Mappi... Channel Address Type Unit Descri...
"4 Application, xmodec " XMode_SetC %OBi% BYTE
Status "% Application. xmoded " ¥Mode_SetD B4 BYTE
"% Application. filt_set " Filt_Set %0826 BYTE
Informaticn " Application, outd " Qutd_Configure LLOE2E BYTE
"# Application.out1 " Outl_Configure %oB22 BYTE
" application.out2 " Out2_Configure 0E22 BYTE
" Application. out3 " Cut3_Configure 024 BYTE
" Application, out4 " Out4_Configure SRS BYTE
"# Application.outs " Quts_Configure OB26 BYTE
"% application.outs " Outs_Configure SOE2F BYTE
" Application.out? " COut?_Configure SoE28 BYTE

-42-

AX series programmable controller software manual Module Configuration

Wiring of common output ports

Common Cutput
External wiring Port Function CHS Leormmal Function Port External wiring
Load Load
o8 Y0 Comman 10 g Comman v oad
! output output k
Load Load
o2 v2 Comman 8 7 Comman v3 pad
! output output L
Load Load
=oa v4 Comman 6 5 Comman Y5 oad
! output output k
Load Load
=02 Y6 Comman 4 3 Comman v7 pad
! output output k
24D 24YDC
— Output Output —:|—+r||—
Fuse Ccom common port 2 1 common port COM Fuse

The output port contains 8 output signals. Only single-ended outputs are supported, and the signal type is source type
output. YO, Y2, Y4, and Y6 share the common COM1, and Y1, Y3, Y5, and Y7 share the common COM2.

Configuration of common output ports

Function value configuration:

Define the variables to configure the ports and map them to the high speed pulse mapping table.
Configuration routine:

1. Configure YO as a common output port.

out0:=0;

g Application, outd i Qutl_Configure OB+ BYTE
2. Configure Y1 as a common output port.
outl:=0;

g Application.outl i Qutl_Configure 2oR22 BYTE

4.2.3.2 High speed pulse output function

If the function value is 1, the signal port is configured as a high-speed pulse output function, and all 8 output ports can be
configured for high-speed pulse output.

The high-speed pulse output support pulse + direction, FWD/REV pulse, and quadrature pulse modes.

Wiring of high-speed pulse output ports

Output pulse:
External wiring Port Function N5 Leurmmal Function Port External wiring
Pulse+ Direction e
Plus0 Pulse output | 10 9 output Sign0 DImm“_Dr\\.'e 0
Direction
-_0 Plus1 Pulse output 8 7 output Sign1 "_-
Direction
-_0 Plus2 Pulse output 5 5 output Sign2 "_-
D 3 Pulse+ Plus3 Pul tout 4 3 Direction Sign3
rve 3 puge 4 us ulse outpu output ign
COM Qutput 5 1 Qutput coMm
| commean port commean port
i
_I: 24VDC

-43-

AX series programmable controller software manual Module Configuration

Configuration of high-speed pulse output ports

Function value configuration:

Define the variables to configure the ports, and map them to the high-speed pulse mapping table.
Configuration routine:

1. Configure YO as a high-speed pulse output port.

out0:=1;

g Application, outd i Qutl_Configure OB+ BYTE
2. Configure Y1 as a high-speed pulse output port.
outl:=1;

g Application.outl i Qutl_Configure 2oR22 BYTE

4.2.3.3 Output comparison function
If the function value is 2, the signal port is configured as an output comparison function with 8 channels.

The output comparison outputs the result of the counter single value comparison, and each counter channel has an output
comparison function. If the counter value is equal to the set comparison value, it will output high, and if it is not equal, it will
output low.

Wiring of output comparison ports

Comparison consistent output

External wiring Port Function CN5 :\i:mmal Function Port External wiring

Load vo Common 10 g Common V1 Load

— output output —

Load Load

0a Y2 Common 8 7 Common Y3 0a

—_— output oufput —_—

Load va Common 5 5 Common v5 Load

— output output —

Load Load

Y6 Common 4 3 Common Y7
— output oufput —
24VD 24VDC
— + COM Qutput 9 1 Qutput COM T ||_
common port common port

Configuration of output comparison ports

Function value configuration:

Define the variables to configure the ports, and map them to the high-speed pulse mapping table.
Configuration routine:

1. Configure YO as a comparison output port.

out0:=2;

T Application, outd i Qutd_Configure oR2+ BYTE
2. Configure Y1 as a comparison output port.
outl:=2;

i Application.outl i Outl_Configure LopE22 BYTE

-4A4-

AX series programmable controller software manual Module Configuration

4.2.4 High-speed I/0O mapping table

The device profile Shenzen INVT-AX70-CPU_1.x.x.x.devdes is a CPU device profile that contains description of the high
speed counting function, which is used for functional configuration of the input and output ports as well as the use and
configuration of the interrupt function. See the following table.

Serial . Input/out .
Variable Data type Meaning
No. put type
1 Gpi_Value IN Word 16-Channel general input feedback
FPGA version number.
) bit6—bit7: major version.
2 Version_FPGA IN BYTE)))]
bit3—bit5: minor version.
bit0-bit2: revision number.
3 In0_Configure IN BYTE
4 In1_Configure IN BYTE
5 In2_Configure IN BYTE
6 In3_Configure IN BYTE
7 In4_Configure IN BYTE
Input terminal function configuration
8 In5_Configure IN BYTE . .
= '9u 0: Standard input function
9 In6_Configure IN BYTE 1: Counting function
10 In7_Configure IN BYTE 2: Trigger, latch and zero-signal function
11 In8_Configure IN BYTE 3: Positive and negative limit zero
12 In9_Configure IN ByTE | function
13 InA_Configure IN BYTE 4: Pulse width measurement function
14 InB_Configure IN BYTE
15 InC_Configure IN BYTE
16 InD_Configure IN BYTE
17 InE_Configure IN BYTE
18 InF_Configure IN BYTE
Counting function configuration for
channel 0 (bit0-bit3), channel 1(bit4-bit7):
0: Single pulse
19 XMode_SetA ouT BYTE 1: Quadrature encoder pulses (QEP)
2: Timing
3: SIGN+PULS
Counting function configuration for
channel 2 (bit0-bit3), channel 3(bit4-bit7)
0: Single pulse
20 XMode_SetB ouT BYTE 1: Quadrature encoder pulses (QEP)
2: Timing
3: SIGN+PULS
Counting function configuration for
channel 4 (bit0-bit3), channel 5(bit4-bit7)
0: Single pulse
21 XMode_SetC ouT BYTE 1: Quadrature encoder pulses (QEP)
2: Timing
3: SIGN+PULS

-A5-

AX series programmable controller software manual Module Configuration

Serial) Input/out)
Variable Data type Meaning
No. put type

Counting function configuration for

channel 6 (bit0-bit3), channel 7(bit4-bit7)
0: Single pulse

22 XMode_SetD ouT BYTE
- 1: Quadrature encoder pulses (QEP)
2: Timing

3: SIGN+PULS

Input signal filter parameter setting (unit:

23 Filt_Set ouT BYTE
- 0.25us)

24 Out0_Configure ouT BYTE
25 Outl_Configure ouT BYTE
26 Out2_Configure ouT BYTE
27 Out3_Configure ouT BYTE

Output terminal function configuration

0: Common output function

1: High-speed pulse output function
28 Out4_Configure ouT BYTE

29 Out5_Configure ouT BYTE
30 Out6_Configure ouT BYTE
31 Out7_Configure ouT BYTE

2: Comparison output function
3-255: Reserved

32 GPO_Set ouT BYTE Common output signal setting bit0-bit7

bit0: Output channel 0 (1: enabled, O:
disabled)

bitl: Output channel 1 (1: enabled, O:
disabled)

33 Run_Enable ouT BYTE bit2: Output channel 2 (1: enabled, O:
disabled)

bit3: Output channel 3 (1: enabled, O:
disabled)

bit6—bit7: Reserved.

34 Interrupt ouT BOOL Global interrupt enable

Interrupt enable
bit0: Interrupt O enable
35 Interrupt_Enable ouT DWORD bitl: Interrupt 1 enable

bit19: Interrupt 19 enable

Interrupt mode

bit0-bit1: X0 interrupt mode
bit2-bit3: X1 interrupt mode
bit4-bit5: X2 interrupt mode
bit6-bit7: X3 interrupt mode
bit8-bit9: X4 interrupt mode
bit10-bit11: X5 interrupt mode
bit12-bit13: X6 interrupt mode
bit14-bit15: X7 interrupt mode
bit16-bit17: Probe 0 interrupt mode
bit18-bit19: Probe 1 interrupt mode
bit20- bit21: Probe 2 interrupt mode
bit22-bit23: Probe 3 interrupt mode
0: rise edge

1: fall edge

2: Two edges

36 Interrupt_Mode ouT DWORD

-46-

AX series programmable controller software manual Module Configuration

The operation interface of Invtmatic Studio is displayed as follows:

Devices X 3 HIGH_PULSE_I0 X g Task 4 Latchvalue & Task s Zphase_Compensate & ManTask [Task 3 + |Prope
=3 hsio_demo2000 - - - TF
() Cevice (00T 8070 HIGH_PULSE_IO Parameters Find Filter Show all = 8l
=l PLC Logic HIGH_PULSE_IO 10 Masping Variable Mappi.. Channel Address Type Unit Deseri. (brey
+ 1} Application -4 Applicston.Input V... @ Gpi_Vale %S WORD
" HIGH_PULSE IO Status 4 application, version_.. i Version_FPGA HiB2 BYTE
"3 SoftMotion General Axis Pool " Application.ind "% In0_Configure %988 BYTE
ioepation "% Applicationinl "9 Ini_Configure %oB: BYTE
" Application.in2 % In2_Configure %082 BYTE
"4 Application.in3 7% In3_Configure %83 BYTE
" Application.in4 "% Ind_Configure %EE4 BYTE
" Application.in5 T Ins_Configure %EES BYTE
i Application.inG % Ind_Configure %086 BYTE
"4 Application.in? “# In7_Confiqure %87 BYTE
" Application.ing "% In3_Configure %oEE BYTE
" Application.in9 i Ing Confiqure AR BYTE
|:| Reset Mapping | Always updatevarisbles |Enabled 2 (always in bus cyde task)
= Create new variable “ =Mapto exstingvariable
Bus Cyde Options
Bus cycle task Task v

4.2.4.1 General input value

The variable corresponding to the device profile is Gpi_Value with the data type of WORD. This parameter is used when
the input signal is set to the common input function. The input signals corresponding to the bits of the variable Gpi_Value
are shown in the following table.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XF | XE | XD | XC | XB | XA | X9 | X8 | X7 | X6 [X5 | X4 | X3 | X2 | X1 | X0

If you need to read a common input signal, you can use either WORD mapping or bit mapping.
In WORD variable mapping mode, 16 input signal values can be read at the same time.

+- 4% application. Input_Value i Gpi_Value LYE:TTY WORD

In Bit mapping mode, one variable can only read one signal value, and the variable type is BOOL.

= Gpi_Value TRIVWO WORD
% application.®xn0_Bit -] Bit0 BLTHOO BOOL
A Bit1 TRIXO, 1 BOOL
% Bit2 %eIX0. 2 BOOL
A Bit3 %RIX0. 3 BOOL

4.2.4.2 VVersion

The variable corresponding to the device profile is Version FPGA with data type BYTE. It is used to read the FPGA
version, where bit6—bit7: major version, bit3—bit5: minor version, bit0-bit2: revision number.

*% application, version_fpga i Version_FPGA IR BYTE

4.2.4.3 Input terminal function configuration

Configure the function of the input port with data type BYTE. There are 16 input ports that can be configured for 5
functions. Including standard input function, counting function, triggering, latching, and Z-signal function, positive and
negative limit zero function, and pulse width measurement function.

-A7-

AX series programmable controller software manual

Module Configuration

" Application.in0
"% Application.in1
T Application.in2
@ application.in3
" Application.in4
"% Application.in5
T Application.ing
T Application.in7
& Application.ind
& Application.ing
"% Application.inA
T Application.inB
& application.inC
" Application.inD
"% Application.inE
T Application.inF

4.2.4.4 Counting mode configuration

@ e e e e e e e e e

Ind_Configure SRS BYTE
Ini_Configure BLOEE BYTE
In2_Configure BLOE2 BYTE
In3_Configure SLOES BYTE
In4_Configure S0E4 BYTE
In5_Configure ELOBE BYTE
In&_Configure BLOES BYTE
In7_Configure SLOEF BYTE
Ing_Configure SLOES BYTE
In9_Configure EORS BYTE
InA_Configure BLOES BYTE
InB_Configure SLOBET BYTE
InC_Configure SRR BYTE
InD_Configure SRS BYTE
InE_Configure BLOEES BYTE
InF_Configure LIRS BYTE

There are 4 variables to configure the counting mode with the data type BYTE. Each variable can be configured for the

counting mode of 2 channels. A total of 8 counter modes can be configured. See the following figure.

"% application.xmodea
"% application.xmodeb
" Application, xmodec
" Application, xmoded

T
T
Ty
Ty

¥Mode_Seta 2LoR1E BYTE
¥Mode_Seth %op17 BYTE
¥Mode_Setc %Lopis BYTE
¥Mode_SetD LI¥=1 TR BYTE

Use 4 bits to set the counter mode with the following values:

Bit Counting mode
0 Single pulse

1 Quadrature encoder pulses

2 Timing counting

3 Pulse + direction

Configure the bits of XMode_SetA to set the mode of different counters.

7 6 5 4 3 2 1 0
Counter 1 Counter 0
Configure the bits of XMode_SetB to set the mode of different counters.
7 6 5 4 3 2 1 0
Counter 3 Counter 2
Configure the bits of XMode_SetC to set the mode of different counters.
7 6 5 4 3 2 1 0
Counter 5 Counter 4
Configure the bits of XMode_SetD to set the mode of different counters.
7 6 5 4 3 2 1 0
Counter 7 Counter 6

-48-

AX series programmable controller software manual Module Configuration

4.2.4.5 Filter parameters

The variable of the corresponding device profile is Filt_Set in 0.25us, which sets the filter parameters of input and output
signals, with the data type BYTE and the maximum filter width 64us. Adjust this parameter to improve the anti-interfere of
the signal.

If the signal interference is strong, set the parameter value larger. If the interference is weak, set it smaller. The filter
parameters are usually set to 1/4-1/3 (no more than 1/2) of the reference width which is the smaller one of the high pulse
and low pulse width. The upper limit is 64us. A parameter value that is too large will filter out the effective pulses, while a
value that is too small may not filter out the clutter effectively.

i Application. filt_set " Filt_Set BLOEAS BYTE
4.2.4.6 Output terminal function configuration

Configure the function of the output port with data type BYTE. There are 8 output ports that can be configured for 3
functions. For details, see the output port function description.

T Application, outd i Qutd_Configure BLOEAY BYTE
T Application.out1 i Qutl_Configure e BYTE
T Application. out2 i Out2_Configure SRS BYTE
i Application. out3 " Qut3_Configure e] BYTE
i Application, out4 i Out4_Configure SRS BYTE
T Application, out5 i Qut5_Configure) BYTE
i Application, outd i Qutd_Configure BLORRE BYTE
i Application. out? i Out?_Configure SRS BYTE

4.2.4.7 Common output value

Common means the common function output. The variable corresponding to the device profile is GPO_Set with the data
type of BYTE. This parameter is used when the output signal is set to the standard output function. The output signals
corresponding to the bits of the variable GPO_Set are shown in the following table.

7 6 5 4 3 2 1 0
Y7 | Y6 | Y5 | Y4 | Y3 | Y2 | Y1 | YO

If you need to set a common output signal, you can use either BYTE mapping or bit mapping.

In BYTE variable mapping mode, 8 output signal values can be set at the same time.
+- T Application, OutPut_Byte i Gpo_Set SRS BYTE

In Bit mapping mode, one variable can only set one signal value, and the variable type is BOOL.

=T Gpo_Set %0QB29 BYTE
"% application,Yn0_Bit i Bitd sLowins BOOL
" Bit1 %0X29.1 BOOL
" Bit2 %QX29.2 BOOL

4.2.4.8 High-speed pulse output function

The variable corresponding to the device profile is Run_Enable with the data type of BYTE. This parameter is used for
channel enable at high speed pulse output. The bits of the variable Run_Enable corresponds to the channel enable, 1
indicates enabled, 0 indicates disabled. The following table shows the correspondence between channels and bits.

7 \ 6 \ 5 \ 4 3 2 1 0
Reserved Channel 3 Channel 2 | Channel1l | Channel O

-49-

AX series programmable controller software manual Module Configuration

4.2.4.9 Global interrupt enable

The variable corresponding to the device profile is Interrupt, which is the master switch that enables all interrupts, with the
data type of BOOL. 1 indicates total interrupt enabled and 0 indicates disabled.

Serial No. Variable Input/output type

ouT

Data type
BOOL

Meaning

35 Interrupt Global interrupt enable

4.2.4.10 Interrupt enable

The variable corresponding to the device profile is Interrupt_Enable with the data type of DWORD. HSIO supports 20
types of interrupts, including 8 external input interrupts, 8 count-comparison interrupts, and 4 probe interrupts, each of
which can be enabled with the bit of Interrupt_Enable. The mapping is shown in the following table.

10 |18 [17 |16 |15 [14 |13 |12 [11 10 |9 [8 |7 [6 |5 |4 3|2]1]0
Probe interrupt

enable

Comparison interrupt enable External interrupt enable

Bit0—hit7 corresponds to external interrupt 0—7 respectively.
Bit8—bit15 corresponds to comparison interrupt 0—7 respectively.
Bit16—bit19 corresponds to probe interrupt 0—3 respectively.

4.2.4.11 Interrupt mode

The variable corresponding to the device profile is Interrupt_Mode with the data type of DWORD. Only external interrupts
and probe interrupts require an interrupt mode. Each mode consists of 2 bits. The mapping of interrupt modes and bits is
shown in the following table.

15|1413\12 11\10 9\8 7\6 5\4 3\2 1|o
External External External External External External External External

interrupt 7 | interrupt 6 | interrupt5 | interrupt 4 | interrupt 3 | interrupt2 | interrupt1 | interrupt O
23 22 21 20 19 18 17 16

Probe interrupt 3

Probe interrupt 2

Probe interrupt 1

Probe interrupt O

Use 2 hits to set the interrupt mode with the following values:

Motion mode configuration Motion mode
0 Rising edge
1 Falling edge
2 Two edges

4.2.5 Interrupt instruction

The HSIO supports 20 types of interrupts, including 8 external input interrupts, 8 count-comparison interrupts and 4 probe
interrupts. To use the interrupt function, configure the corresponding IO port function. Then, enable the global interrupt
and the required interrupt bits. If an external input interrupt or probe interrupt is used, the interrupt mode must also be set.

4.2.5.1 External interrupt instruction

The corresponding input port numbers for external interrupts are X0—X7. Configure these ports as common input ports,
set an interrupt mode to enable interrupts, and configure the interrupt task so that the operations can be performed in the
interrupt task.

External interrupt configuration

Follow the steps to implement the interrupt function:

-50-

AX series programmable controller software manual Module Configuration

1: Set the input terminal as standard input function
For details, see Input terminal function description.
2: Set global interrupt

Set Interrupt to true. See Global interrupt enable in the device profile parameter description.

Serial) Input/output .
Variable Data type Meaning
No. type
35 Interrupt ouT BOOL Global interrupt enable

3: Set input port interrupt

Set the 8 input port bits of the Interrupt_Enable the device profile, with Gpix of input port x set to true. Set a bit to enable
the interrupt function mapping to that bit.

=g Interrupt_Enable g e DWORD
i Gpi0 %0X36.0 BOOL
" Gpil %0X36.1 BOOL
" Gpi2 %Q¥36.2 BOOL
" Gpi3 %0X36.3 BOOL
" Gpi4 %QX36.4 BOOL
i Gpi5 %0X36.5 BOOL
" Gpi %0X36.6 BOOL
i Gpi7 %QX35.7 BOOL

4: Set interrupt mode

The interrupt mode setting consists of 2 bits, and different interrupts correspond to different bits. For details, see
Interrupt mode in the device profile parameter description.

5: Select interrupt task

In the Invtmatic Studio task, set the type to External, and select the event inxInterrupt of the input port X0—X7, where x
ranges from 0 to 7.

g i MainTask X 5+ Y 84 FD HF] MChome i 1

Confiquration

Priority { 0..31)z |2

Type

| 4 Bxternal v| BExternal event |indInterrupt
in1Interrupt

Watchdog in2Interrupt

D Enable in3Interrupt

indInterrupt
inSInterrupt
indInterrupt
in7Interrupt

Time (e.q. t£200ms)

An external signal generates an interrupt based on the interrupt mode and calls the corresponding task execution.

-51-

AX series programmable controller software manual Module Configuration

External interrupt timing

GPIx Interrupt
falling edge| {
valid \. Interrupt ™
S rising edge
Interrupt[l valid
Upper computer Upper computer

interrupt processing \ interrupt processing \

Interrupt_clean(]

Figure 4-1 External input interrupt timing

GPIx represents the xth external general input channel where 0 =< x <= 7, and Interrupt([] is the interrupt state output of
GPIx. The high-level pulse output by Interrupt[] uses a dotted line to indicate that interrupts can be output only if the
interrupt mode is valid and the interrupt enable is valid. The upper computer interrupt process and the interrupt_clean[]
signal only appear after the output of the Interrupt[], so they are also presented as dotted lines. Interrupt_clean[] is the
clear signal given by the upper computer in response to the Interrupt[], which clears the Interrupt[] to zero.

4.2.5.2 Probe interrupt instruction

The corresponding input port numbers for probe interrupts are X8—XB (i.e. CxT, 0 =< x <= 3). The input port signal function
should be configured as a latching function.

Probe interrupt wiring

External wiring Port Function CHS Le;mmal Function Port External wiring
251 Input common 29 2 Input common 599
port port j*‘
N W=l
coT Probe signal 18 17 Probe signal cAT
input input -
CoT Probe signal 16 15 Probe signal CaT
input input o

Probe interrupt configuration

Follow the steps to implement the interrupt function:
1: Set the input terminal as latching function.

For details, see Input terminal function description.
2: Set global interrupt.

Set Interrupt to true, see Global interrupt enable in the device profile parameter description.

Serial No. Variable Input/output type | Data type Meaning

35 Interrupt ouT BOOL Global interrupt enable

3: Set input port interrupt.

Set the 4 input port bits of the Interrupt_Enable the device profile, with Trigx of input port x set to true. Set a bit to enable
the interrupt function mapping to that bit.

-52-

AX series programmable controller software manual

Module Configuration

"% Application.P... [
"% Application.P... i
& Application.p... i
"% Application.P... i

4: Set interrupt mode.

TrigQ
Trigl
Trig2
Trig3

BOOL
BOOL
BOOL
BOOL

The interrupt mode setting consists of 2 bits, and different interrupts correspond to different bits. For details, see Interrupt

mode in the device profile parameter description.

5: Select interrupt task.

In the Invtmatic Studio task, set the type to External, and select the event prbxinterrupt of the input port X8—XB, where x
ranges from 0 to 3. Read the probe latching value in the LatchValue_HP function block via the interrupt task flag.

e PulseCounter

Configuration

@ MainTask X ﬂ GVL_Param

i

Priority { 0..31): |1

Type

External -

Watchdog
[C]Enable

Time (e.g. t%200ms):

Sensitivity: 1

External event:

indInterrupt

indInterrupt
inlInterrupt
in2Interrupt
in3Interrupt
indInterrupt
inSInterrupt
indInterrupt
inFInterrupt
cmpOInterrupt
cmpllnterrupt
cmp2Interrupt
cmp3Interrupt
cmp4lnterrupt

gk Add Call 3 Remove Call [Changg@MPaInterupt

cmpéInterrupt

POU

PulseCounter

prblInterrupt
prb2Interrupt
prb3Interrupt

l:mE?InterruEt

An external signal generates an interrupt based on the interrupt mode and calls the corresponding task execution.

Probe interrupt timing

A
CxT Interrupt /4y
falling edge | Interrupt N
valid \ u Ny -
S rising edge &
Interrupt(] vaild ‘

Upper computer

Upper computer

interrupt processing \

Interrupt_clean(]

interrupt processing

Figure 4-2 Probe input interrupt timing

CXT represents the xth probe input channel where 0 =< x <= 3, and Interrupt[] is the interrupt state output of CxT. The

high-level pulse output by Interrupt[] uses a dotted line to indicate that interrupts can be output only if the interrupt mode is

valid and the interrupt enable is valid. The upper computer interrupt process and the interrupt_clean[] signal only appear

after the output of the Interrupt[], so they are also presented as dotted lines. Interrupt_clean(] is the clear signal given by

the upper computer in response to the Interrupt[], which clears the Interrupt[] to zero.

-53-

AX series programmable controller software manual Module Configuration

4.2.5.3 Comparison interrupt instruction

Comparison interrupt includes single-value comparison interrupt and multi-value comparison interrupt. Single-value
comparison interrupt is generated by calling the function block CompareSingleValue_HP, and multi-value comparison
interrupt is generated by calling CompareMoreValue_HP. The following steps describe the generation of single-value
interrupt and multi-value interrupt respectively.

Comparison interrupt configuration

e Single-value comparison interrupt:
1: Set the input terminal as counting function.
For details, see Input terminal function description.
2: Set global interrupt.

Set Interrupt to true, see Global interrupt enable in the device profile parameter description.

Serial No. Variable Input/output type Data type Meaning

35 Interrupt ouT BOOL Global interrupt enable

3: Set input port interrupt.

Set the 8 input port bits of the Interrupt_Enable the device profile, with Compx of input port x set to true. Set a bit to
enable the interrupt function mapping to that bit.

Variable Mapping Channel Address Type
4§ Application.P... i CompQ SLOMITD BOOL
4§ Application.P... i Comp1 LoMIT BOOL
T Application.P... k] Comp2 BoomeF 2 BOOL
i Application.P... " Comp3 SIS BOOL
4§ Application.P... i Comp4 oMEE 4 BOOL
"$ Application.P... i Comp5 BLOMIFE BOOL
"$ Application.P... i Compé ONITE BOOL
"$ Application.P... i Comp? LI B BOOL

4: Set the comparison interrupt output.
If comparison interrupt output is not needed, skip this step.

Select the port to be output, set the corresponding port in the device profile as the comparison output function, and
select any one of the following 8 channels through the single-value comparison function block
CompareSingleValue_HP parameter OutChannel. The OutChanne value ranges from 0 to 7. One output channel
OutChannel value can only correspond to one CMP channel.

i Standard i . Comparison
Output terminal) High-speed pulse output function .
output function output function
General
YO CHOCW/PULSO CMPO
Common 0
Y1 Common 1 CHOCCW/SIGNO CMP1
Y2 Common 2 CH1CW/PULS1 CMP2
Y3 Common 3 CH1CCW/SIGN1 CMP3
Y4 Common 4 CH2CW/PULS2 CMP4
Y5 Common 5 CH2CCW/SIGN2 CMPS

-54-

AX series programmable controller software manual Module Configuration

. Standard) . Comparison
Output terminal i High-speed pulse output function .
output function output function
Y6 Common 6 CH3CW/PULS3 CMP6
Y7 Common 7 CH3CCW/SIGN3 CMP7

5: Select interrupt task.

In the Invtmatic Studio task, set the type to External, and select cmpxInterrupt, where x ranges from 0 to 7.

e PulseCounter % MainTask X @ GVL_Param

Configuration

Priority { 0..31) |1

Type

External w External event: | cmpOInterrupt

indInterrupt
in1Interrupt
Watchdog in2Interrupt
in3Interrupt
[]Enable in4Interrupt
in5Interrupt
Time {e.q. t£200ms): inGInterrupt

in7Interrupt
Sensitivity: 1 ﬂm pt___|

cmp 1Interrupt
cmp2Interrupt
cmp3Interrupt
cmpdInterrupt

cmp5SInterrupt
gk Add Call < Remove Call ﬂ?ChangEmpGInterrupt
cmp FInterrupt

|nn||

If the comparison value is equal, an interrupt is generated and the corresponding task execution is called. The
channel x corresponds to the cmpxInterrupt comparison interrupt task and cannot be modified at will.

6: Call function block to generate interrupt

Single-value comparison calls the function block CompareSingleValue_HP to generate an interrupt. Setting the
comparison value to be the same as the count value can also generate an interrupt output.

e Multi-value comparison interrupt:
1: Set the input terminal as counting function
For details, see Input terminal function description.
2: Set global interrupt

Set Interrupt to true, see Global interrupt enable in the device profile parameter description.

Serial No. Variable Input/output type Data type Meaning

35 Interrupt ouT BOOL Global interrupt enable

3: Set input port interrupt

Set the 8 port bits of the Interrupt_Enable the device profile, with Compx of port x set to true. Since a multi-value
comparison function block can be used to generate multiple interrupts, the first value is the enable bit of Cmp0
interrupt, the second value is the enable bit of Cmp1l interrupt, and so on, and the eighth value is the enable bit of
Cmp7 interrupt. It cannot be modified arbitrarily.

-55-

AX series programmable controller software manual

Module Configuration

Variable Mapping Channel Address
"$ Application.P... i Compd SLoNITE
& application.p. ..] Comp1 LoMIT
"# Application.P... “ip Comp2 Soomaz o
4§ Application.P... " Comp3 o373
"é application.p. .. i Comp4 oMEE 4
"# Application.P... i Comps SLoNITE
"§ Application.P... i Comp& LLONITE
"$ Application.P...] Comp7 LI B

4: Select interrupt task

Type
BOOL
BOOL
BOOL
BOOL
BOOL
BOOL
BOOL
BOOL

In the Invtmatic Studio task, set the type to External, and select cmpxInterrupt, where x ranges from 0 to 7.

e PulseCounter @ MainTask X ﬂ GVL_Param

Configuration

Priority { 0..31) |1

Type

External ~ Ewternal event:

Watchdog
[]Enable

Time {e.q. t£200ms):

cmpOInterrupt

indInterrupt
in1Interrupt
in2Interrupt
in3Interrupt
indInterrupt
in5Interrupt
ingInterrupt

in7Interrupt
Sensitivity: 1 mm pt__|

gk Add Call 3 Remove Call & Changd

|n|"‘\ll

cmp lInterrupt
cmp2Interrupt
cmp3Interrupt
cmp4lnterrupt
crip5SInterrupt
cmpaInterrupt
cmp7Interrupt

The multi-value comparison function block has multiple comparison values, each of which corresponds to an

interrupt enabled bit of Compx. It shares a one-to-one mapping with the interrupt task cmpxInterrupt where x ranges

from 0 to 7 and cannot be modified at will.

5: Call function block to generate interrupt

Multi-value comparison calls the function block CompareMoreValue_HP to generate an interrupt. Setting the

comparison value to be the same as the count value will generate an interrupt output. For now, only eight

comparison values are supported for multi-value comparisons to generate interrupts, that is, the first eight values of

a multi-value comparison can generate interrupts.

-56-

AX series programmable controller software manual Module Configuration

Comparison interrupt timing

e Single-value comparison interrupt

Cnt[x]CvEqgPV /H T

Interrupt “ Interrupt “\

enabling _ T i —
Interrupt] V@ valid ‘
Upper computer Upper computer
interrupt processing \ interrupt processing

Interrupt_clean(]

Figure 4-3 Single-value comparison interrupt timing

Cnt[x]CvEQPvV represents the single-value comparison signal of the xth counting channel, in which 0 =< x <= 7. A high
pulse indicates that cv and pv are equal. Interrupt[] is the interrupt state output corresponding to Cnt[x]CVEgPv. The
high-level pulse output by Interrupt[] uses a dotted line to indicate that interrupts can be output if the interrupt enable is
valid. The upper computer interrupt process and the interrupt_clean[] signal only appear after the output of the Interrupt][],
so they are also presented as dotted lines. Interrupt_clean[] is the clear signal given by the upper computer in response to
the Interrupt[], which clears the Interrupt[] to zero.

e Multi-value comparison interrupt

Cnt[x]CVEQPV[y] /H T

Interrupt\ Interrupt NO
enabling \‘L enabling QT
Interrupt[] valid valid
Upper computer Upper computer

interrupt processing \ interrupt processing \

Interrupt_clean(]

Figure 4-4 Multi-value comparison interrupt timing

Cnt[x]CvEQgPvV[y] represents the yth comparison value signal of the xth counting channel, in which 0 =<x <=7 and 0 =<y
<= 7. A high pulse indicates that cv and pv are equal. Interrupt]] is the interrupt state output corresponding to
Cnt[x]CvEQgPV[y]. The high-level pulse output by Interrupt[] uses a dotted line to indicate that interrupts can be output if the
interrupt enable is valid. The upper computer interrupt process and the interrupt_clean[] signal only appear after the
output of the Interrupt[], so they are also presented as dotted lines. Interrupt_clean(] is the clear signal given by the upper
computer in response to the Interrupt[], which clears the Interrupt[] to zero.

In the single-value comparison interrupt, each counting channel has only one interrupt signal output, and all counting
channels (0-7) can output single-value comparison interrupt signals. In the multi-value comparison interrupts, only
counting channels 0-3 can output multi-value interrupts, and each counter can output 8 (0-7) interrupt signals. When a
multi-value counting channel is selected, its yth comparison value corresponds to the interrupt signal one by one. Only
one counting channel is valid at a time for the multi-value comparison interrupt.

4.3 Digital input/output module
4.3.1 Creating a project for digital input/output module

1. Create a digital I/O application.

2. Add the library files loDrvDI16_1.1.0.0.devdesc.xml and loDrvDO16_1.1.0.0.devdesc.xml required by the module.

-57-

AX series programmable controller software manual Module Configuration

4.3.2 Variable definition and use

[1oDrvDO18] 10DrvDIIE X -
PCL-Bus IEC Objects Find Filter Show all -
- Mebmi T . .
Internal Parameters Variable apping Channel Address ype Unit Description
=Y B1 %I84 BYTE
Internal 1/ Mapping 5 Bitd %IX4.0 BOOL
*» Bit1 %IX4.1 B00L
S » Bit2 %lX4.2 BOOL
Formation » Bit3 %43 BOOL
» Bit4 %IX4.4 BOCL
*» BitS %IX4.5 B00L
» Bits %IX4.6 BOOL
» Bit7 %IX4.7 800L
=% B2 %IBS BYTE
» Bitd %IX5.0 B00L
» Bit1 %IX5. 1 BOOL
» Bit2 %IX5.2 800L
» Bit3 %IX5.3 BOOL
» Bitd %IX5.4 BOOL
» Bits %IX5.5 BOOL
» Bits %IX5.6 800L
» Bit7 %IX5.7 BOOL
» Version FPGA %IB6 BYTE
| Reset Mapping Always updatevariables |Use parent device setting
= Create new variable “# =Mapto existing variable
Bus Cyde Options
Bus cycle task Use parent bus cyde setting
< >
Figure 4-5 Variable mapping of input module
() 100rvDO16 x| [10DrvDIS hd
PCI-Bus IEC Objects Find Filter Show all -
A Variable Mapping Channel Address Type Unit Description
= e QB %QBa4 BYTE
Internal /0 Mapping " Bitd %QX44.0 BOOL
" Bit1 %QX44.1 BOOL
S " Bit2 %QX44.2 BOOL
e “# Bit3 %QX44.3 BOOL
" Bit4 %QX44.4 BOOL
" Bit5 %QX44.5 BOOL
e Bits %OX44.6 BOOL
“® Bit7 %QX44.7 BOOL
= "¢ QB2 %QB45 BYTE
e Bitd %QX45.0 BOOL
" Bit1 %QX45.1 BOOL
" Bit2 %QX45.2 BOOL
“» Bit3 %QX45.3 BOOL
e Bit4 %QX45.4 BOOL
e Bits %QX45.5 BOOL
"® BitS %QX456 BOOL
" Bit7 %QX45.7 BOOL
» Version_FPGA %IB3 BYTE
l Reset Mapping Always updatevariables | Use parent device setting
® = Create new variable % = Mapto existing variable
Bus Cyde Options
Bus cydle task Use parent bus cyde setting
< >

Figure 4-6 Variable mapping of output module

4.4 Analog input/output module
4.4.1 Creating a project for analog input/output module

1. Create an analog I/O application project.

2. Add the library files loDrv4AD_1.1.0.0.devdesc.xml and loDrv4DA_1.1.0.0.devdesc.xml required by the module.

-58-

AX series programmable controller software manual Module Configuration

4.4.2 Variable definition and use

@ 1o0rv4pa] 1oDrvaaD x -
PCI-Bus IEC Objects Find Filter Show all -
R Variable Mapping Channel Address Type Unit Description

- CHO %QW35 UINT
Internal 1/O Mapping + "y CcH1 %QW36 UINT
+ "y cH2 %QW37 UINT
S + Ty cH3 %QW38 UINT
Information "o P %QW39 UINT
“» ND %IWS INT
» ™1 %W INT
“» N2 %IW7 INT
“» N3 %IW3 INT
» Version_FPGA %IW3 INT
“» Version_MCU %IW10 INT
[|| ResetMapping | Alwaysupdstevariables |Use parent device setting
@ = Create new variable "% =Mapto existing variable
Bus Cyde Options
Bus cycle task Use parentbus cyde setting
< >
Figure 4-7 Variable mapping of analog input module
() 1oDrvabpA x| (7] I1oDrv4aD -
PCI-Bus IEC Objects Find Filter Show all -
. Moo . .
Internal Parameters Variable apping Channel Address Type Unit Description
" Configuration CHO ~ %QW23 INT
Internal 1/0 Mapping "» Data_CHO %QW24 INT
"9 Data_Defaultd %QW25 INT
Status E] Configuration_CH1 ~ %QW26 INT
Efonmation "» Data_CH1 %QW27 INT
"9 Data_Default1 % QW28 INT
+ s Configuration_CH2 ~ %QW29 INT
¥ Data_CH2 %QW30 INT
» Data_Defauit2 %QW3L INT
+"p Configuration_CH3 ~ %QW32 INT
"9 Data_CH3 %QW33 INT
"9 Data_Default3 %QW34 INT
» Version_FPGA %187 BYTE
» Version_MCU %183 BYTE
[]I esetmepping | Alwaysupdatevariables |Use parent device setting
= Create new variable “# =Mapto existing variable
Bus Cyde Options
Bus cycle task Use parent bus cyde setting
< >

Figure 4-8 Variable mapping of analog output module
4.5 Temperature module
4.5.1 Creating a project for temperature module

1. Create a temperature module application.

2. Add the library file loDrvTemperature_1.1.0.0.devdesc.xml required by the module.

-590-

AX series programmable controller software manual

Module Configuration

4.5.2 Variable definition and use

_-ﬂ ToDrvTemperature X
PCI-Bus IEC Objects

Internal Parameters

Internal If0 Mapping

Status

Information

Find Filter Show all -
Variable Mapping Channel Address Type Unit Description
» Temperatured %ID6 REAL
» Breakupd %828 BYTE
» Overrun0 %829 BYTE
“» Temperaturel %ID8 REAL
» Breakup1 %IB36 BYTE
“» Overrunt %IB37 BYTE
» Temperature2 %ID10 REAL
» Breakup2 %IB44 BYTE
» Overrun2 %IB45 BYTE
*» Temperature3 %ID12 REAL
“» Breakup3 %IB52 BYTE
“» Overrun3 %IB53 BYTE
» Version_FPGA %IB54 BYTE
“» Version_MCU %IBSS BYTE
“» In_Cic %ID14 REAL
» out_cic %ID15 REAL
“# Basic_Set_0 %QBS0 BYTE
" Sampling_Period 0 %QB81 BYTE
“# Sensor_Type_0 %QB82 BYTE
"% Filtering_Time_0 %QB83 BYTE
"9 Upper_Value_0 %QW42 INT
" Lower_Value_0 %QW43 INT
"# Basic_Set_1 %QBS8 BYTE
] sampling_Period_1 %QBSS BYTE
"9 Sensor_Type_1 %QBS0 BYTE
"® Filtering_Time_1 %QB91 BYTE
"# Upper_Value_1 %QW46 INT
“» Lower_Value_1 %QW47 INT
" Basic_Set_2 %QBI BYTE
“® Sampling_Period_2 %QB97 BYTE
“p Sensor_Type_2 %QB9& BYTE
" Filtering_Time_2 %QB99 BYTE
“® Upper_Value_2 %QW50 INT
“p Lower_Value_2 %QWS1 INT
"y Basic_Set_3 %QB104 BYTE
“p Sampling_Period_3 %QB105 BYTE
“# Sensor_Type_3 %QB106 BYTE
" Filtering_Time_3 %QB107 BYTE
“# Upper_Value_3 %QW54 INT
"% Lower_Value_3 %QW55 INT

Figure 4-9 Variable mapping of temperature module

4.5.3 Temperature module

EtherCAT remote extension module (AX-EM-Rcm-ET) is used to extend the temperature module (AX-EM-4PTC) through

the back plate. The instructions are as follows:

1.

Right click AX-EM-ECM-ET in the device panel to add the temperature module (AX_EM_4PTC). Control the module
through the multiple sets of variables in the Module/IO mapping tab, as shown in the following figure.

-60-

AX series programmable controller software manual Module Configuration

B untitled2.project* - Invtmatic Studio - 0 bs
Fle Edit View Project Build Online Debug Tools Window Help 4
= S o 508 A k- #% Application [Device: PLC Logic] - ©f -
g
Devices - 8 % |E] Pc_PRG 1 Ax_EmM_4PTC X -
= (1) [untted2 -
= e Find Filter Show all -
= @) Devies muvT AX70) Startup Parameters
= 8 pLc Logic Module Y0 Mapping Variable Mapping Channel Address Type Unit Description
= £ Application + " Config_Wordd W2 INT Config_Wordd
i) Liorary Manager Module IEC Objects + e Config_Word1 INT Config_Word1
[8] rpLc_Pre (PrE) + "9 Config_Word2 NT Config_Word2
= Information % . .
=@ rask Configuration + " Config_Word3 INT Config_Word3
@ EtherCAT Task + "9 Config_Words INT Config_Word4
= & MainTask + "o Config_Word$ INT Config_WordS
&) puc_pre + "y Config_Words INT Config_Words
3 HIGH_PULSE_IO + Temperatured INT Temperatured
= (@ ethercAT_Master_SoftMotion (EtherCAT Master Soft + % Temperatwel WIW3 INT Temperature1
= () AX_EM_ECM_ET (EtherCAT Siave Moduie) s Temperatwe2 WIW4 INT Temperature2
@ ax_EM_#TC (Temperature Input 248its) + 4 Temperatwe3 WIWS INT Temperatire3
"3 SoftMotion General Axis Pool % Breakup RIWE NT Brealup
<
POUs - 2 x
ResetMapping Always updatevariables | Use parent device sef
= [unoted2 = =0
B Project Settings @ = Create new varisble % =Mapto exsting varisble
< >
Messages - Total 0 error(s), O warning(s), 3 message(s) - X
Devices + [© 0 error(s) [0 warning(s) [@ 3 message(s) | X ¥
Description Project Object Position A
Lastbuid: @ 0 ® 0 Precompie /' @ Project user: (nobady) Q

Figure 4-10 Variable mapping of temperature module

2. After compiling, log in to download the project and run it.

3. Variable description: the following tables describe the use of all variables for the four channels.

Table 4-4 Variable description

Parameters Value Valid bit Variable name
Temperature of channel O [15:0] TemperatureO
Temperature of channel 1 [15:0] Temperaturel
Temperature of channel 2 [15:0] Temperature?2
Temperature of channel 3 [15:0] Temperature3
Disconnection detection Normal 00 [1:0]
result of channel 0 Disconnected 01 '
Disconnection detection Normal 00 3:2]
result of channel 1 Disconnected 01 '
. - . Breakup
Disconnection detection Normal 00 [0:8]
result of channel 2 Disconnected 01 '
Disconnection detection Normal 00
- [11:10]
result of channel 3 Disconnected 01
Enable 1
Enable channel 0 X [0]
Disable 0
Displ d < 0 [1]
isplay mode
Py °F 1
Internal cold junction 0
Cold junction compensation 2]
compensation method External cold junction 1
compensation Config_Word0
Sensor disconnection Enable 1 3]
detection Disable 0
o . Enable 1
Over-limit detection - [4]
Disable 0
B 000
Sensor type E 001 [11:8]
J 010

-61-

AX series programmable controller software manual Module Configuration

Parameters Value Valid bit Variable name
K 011
N 100
R 101
S 110
T 111
PT100 1000
PT500 1001
PT1000 1010
CU500 1011
2-Wire
3-Wire 00
. [13:12]
4-Wire 01
(For RTD only) 10
Filter time 0-100 0-100 [6:0]
Enable 1
Enable channel 1 X [8]
Disable 0
Displ d < 0 [9]
isplay mode
pay °F 1
Internal cold junction 0
Cold junction compensation Config_Word1
: R [10]
compensation method External cold junction 1
compensation
Sensor disconnection Enable 1 [11]
detection Disable 0
. . Enable 1
Over-limit detection X [12]
Disable 0
B 000
E 001
J 010
K 011
N 100
R 101 3:0
S 110 [3:01
s ; T 111
ensor type
yp PT100 1000 Config_Word2
PT500 1001
PT1000 1010
CU500 1011
2-Wire
. 00
3-Wire 01 54
4-Wire [5:4]
10
(For RTD only)
Filter time 0-100 0-100 [14:8]
Enable 1
Enable channel 2 X [0]
Disable 0
. °C 0
Display mode o 1 (1]
- - Config_Word3
Internal cold junction 0
Cold junction compensation 2
compensation method External cold junction 1
compensation

-62-

AX series programmable controller software manual

Module Configuration

Parameters Value Valid bit Variable name
Sensor disconnection Enable 1 3]
detection Disable 0
. . Enable 1
Over-limit detection X [4]
Disable 0
B 000
E 001
J 010
K 011
N 100
R 101
[11:8]
S 110
s) T 111
ensortype PT100 1000
PT500 1001
PT1000 1010
CU500 1011
2-Wire
. 00
3-Wire
. 01 [13:12]
4-Wire
10
(For RTD only)
Filter time 0-100 0-100 [6:0]
Enable 1
Enable channel 3 X [8]
Disable 0
Displ d < 0 [9]
isplay mode
Py °F 1
Internal cold junction 0
Cold junction compensation [10] Config_Word4
compensation method External cold junction 1
compensation
Sensor disconnection Enable 1 [11]
detection Disable 0
. . Enable 1
Over-limit detection X [12]
Disable 0
B 000
E 001
J 010
K 011
N 100
R 101
[3:0]
S 110
T 111
Sensor type i
PT100 1000 Config_Word5
PT500 1001
PT1000 1010
CU500 1011
2-Wire
. 00
3-Wire
) 01 [5:4]
4-Wire
10
(For RTD only)
Filter time 0-100 0-100 [14:8]

-63-

AX series programmable controller software manual

Module Configuration

Parameters Value Valid bit Variable name
. . 250ms 01
Sampling period of
500ms 10 [1:0]
channel 0
1000ms 11
. . 250ms 01
Sampling period of
500ms 10 [3:2]
channel 1
1000ms 11]
Config_Word6
. . 250ms 01
Sampling period of
500ms 10 [5:4]
channel 2
1000ms 11
. . 250ms 01
Sampling period of
500ms 10 [7:6]
channel 3
1000ms 11
Table 4-5 Supported sensor types and measurement range
Temperature range in Temperature range in
Iltem Sensor name . .
Celsius Fahrenheit
PT100 -200.0°C-850°C -328.0°F-1562.0°F
) PT500 -200.0°C-850°C -328.0°F-1562.0°F
Thermal resistor type
PT1000 -200.0°C-850°C -328.0°F-1562.0°F
Cu100 -50.0°C-150°C -58.0°F-302.0°F
B 200.0°C-1800°C 392.0°F-3272.0°F
-270.0°C-1000°C -454.0°F-1832.0°F
N -200.0°C-1300°C -328.0°F-2372.0°F
J -210.0°C-1200°C -346.0°F-2192.0°F
Thermocouples type
K -270.0°C-1370°C -454.0°F-2498.0°F
R -50.0°C-1765°C -58.0°F-3209.0°F
S -50.0-1765 -58.0°F-3209.0°F
T -270.0°C-400°C -454.0°F-752.0°F

4.6 Communication module

The EtherCAT communication module is used as an EtherCAT slave. Before using the module, add the device profile
INVT_ECAT_SLAVE_FOR_Invtmatic Studio_V1.07.xml. For detailed instructions, refer to the case of adding DA200
servo drive to the EtherCAT master node.

1.

Create a new project in the Invtmatic Studio upper computer, Right click Device to add a device, and add an

EtherCAT Master SoftMotion module, as shown in the following figure:

-64-

AX series programmable controller software manual

Module Configuration

B @ Add Devi x
File Edit View Project Buid Of A
ET-IEIERF Y O Ry] 1=
Action
(@ Append devies (O Update devies. =
=3 unsesz [Siving for o Fllext search | vendor | <allvendors> v
g [Name Vendor Version Description A g
=Sl Aclooe
+ (@ Mscelanecus
© Application 1
D o s + on caens
[B) pc_pre prG) = o3 ethercar
= @ Tesconfiguwaton = e L wo% (@& |
= & MainTask [
9@ e srs (i EthercaT Master 35 - Smart Software Soktions GbH__3.5,15.0__EtherCAT Master. .
1 1o o Iiﬁ EerCAT Master SoftMotion 35 - Smart Softnare Soubons GriH _3.5.15.0 _ EERerCAT Master SoftHoton.]
PUSE + B Ethemet Adapter
‘3 SoftMoton General Axs Pool
S Etheeyr
% 4 Home8Buiding Automation
1= Modbus -
[Group by category [] Displayall O
@ Mame:EthercAT Master Softhoton
Vendor: 35 - Smart Software Solutons GmbH
Categories: Master
< Ve 3.5.150 S
pous Order Number: ~
=13 troesz Description: EtherCAT Master Softotion. ..
B Project settngs
100% [@)
Append selected device as last child of 3
Device =
P x
@ (You can select another target node in the navigator while this window is open.)
Add Device Close Position ~
Lastbuid: © 0 ® 0 Precomple @ Project user: (nobody)

Figure 4-11 Add an EtherCAT Master SoftMotion module

2.

(AX-EM-RCM-ET), as shown in the following figure:

@ Add Device

File Edit View Project Buld Of

e & 3 | g4 Neme [MCEMECMET
Acton
o (@ Append device () Insert device O Update device
= 3 tnoteaz Strng for a fultext search | vendor | <allvendors>
= (@ Device W A7) Name Vendor
=@ ac
bl o Loge i 3
8 % EthercAT
y Manager
= w¥save
[B) PLc_prRG (PRG) =
i S # (13 Delta Bectronics, Inc. -Servo Drives:
= onfiourat
& o ud % (10 electronic - electroni EtherCAT Devices
% = @t
= & MonTask =%
8 nc i = (23 EtherCAT MOOUE
7 mmmﬁk o
3 HIGH PULSE_IO

|? EtherCAT_Master_SoftMoton Eherq T
o
Lo] # (23 Panasorsc Corporation, Applances Compeny - AC Servo Driver
SoHoton General A Pod. 1}

< I—
POUS

< >
= DClosst epetson) O]
B memevec s roak

Vendor: INVT

Categories: Slave

Version: Revision = 16300000 100

=

= () unvtedz
B Project setings

[Description: EtherCAT Siave mported from Slave XML: INVT_ECAT_SLAVE_FOR_CODESYS_V1.08.xm Device: EtherCAT Slave Modue |

Append selected device as last child of
EtherCAT_Master_SoftHotion

@ (You can select another target node inthe navigator while this window is open.)

Lastbuid: © 0 ® 0 Precompie / @

Figure 4-12 Add a EtherCAT remote expansion module

Project user: (nobody))

Right click the EtherCAT Master SoftMotion module to add a device, and add the EtherCAT Slave Module

The following section explains how to use the EtherCAT remote expansion module to extend our existing 10.

-65-

AX series programmable controller software manual Module Configuration

4.6.1 Digital input module

EtherCAT remote extension module (AX-EM-Rcm-ET) is used to extend the digital input module (AX-EM-1600D) through
the back plate. The instructions are as follows:

1. Right click AX-EM-ECM-ET in the device panel to add the digital input module (AX_EM_1600D). Control 16
channels through two sets of variables InByteO and InBytel in the Module/IO mapping tab, as shown in the following

figure.
B untitled2 project* - Invtmatic Studio - o %
File Edit View Project Build Online Debug Tools Window Help
W & S BREB X ML MAY =) 5" |# | Application [Device: PLC Logic] - OF LS "
Devices ~ 8 x| [§ rcere @ Ax_em_15000 x =
= 23 thited2 -

Startup Parameters Find Filter Show all

= (@ Device ONVT AX7X)

=80 PLc Logic Wodule 1 Mapping Variable Mapping Channel Address Type Unit Description

= €3 Application =% InByed W3 usINT Inyted
D Lorary Manager Module IEC Objects £ B0 wWa0 BooL
[8) PLc_rrG PrG) “» Bit1 %1 BOOL
= (@ Task Configuration Wformation “» Bit2 w2 BO0L
& EthercAT Task » B3 w33 BooL
= & ManTask » Bits %IX3,4 BOOL
) e pre » Bits w5 BodL
'S HIGH PULSE IO » B was BooL
= () EthercAT_Master_SoftMotion (EtherCAT Master Softhy “» Bt7 %IX3.7 BOOL

= (@ AL EM ECM ET [EtherCAT Siave Module) =% InBytel %IB4 USINT InBytel

@ Ax_EM_1500D (Digital Input 16 Bits) » 8itd %40 BOOL
"% SoftMoton General Axis ool » Bit1 41 B00L
» Bit2 %lx4.2 BOOL
“» Bit3 %Di4.3 BOOL
* Bits X4, 4 BOOL
* Bt Y45 BOOL
» BitS. %46 BOOL
= * Bt7 %X4.7 BO0L
POUs -8 x
= [Lttied? & .
B Project stings InByted ResetMapping | Always updatevarisbles |Use parent device setiing
= Create new variable “p =Mapto existing variable
< >
Messages - Total 0 error(s), 0 warming(s), 3 message(s) - 3%
Devices - [@ 0 errors) [0 warring(s) [@ 3 message(s) | % ¥
Description Project Object Position A
v
Lastbuid: © 0 B 0 Precompie @ Project user: (nobody) /]

Figure 4-13 Variable mapping of digital input module

2. After compiling, log in to download the project and run it.
4.6.2 Digital output module

EtherCAT remote extension module (AX-EM-Rcm-ET) is used to extend the digital output module (AX-EM-0016DP/
AX-EM-0016DN) through the back plate. The instructions are as follows:

1. Right click AX-EM-ECM-ET in the device panel to add the digital output module (AX_EM_0016DP). Control 16
channels through two sets of variables OutByteO and OutBytel in the Module/IO mapping tab, as shown in the
following figure.

| Devices - X (5] mcrre 4 Ax_em_oo16DP x h.d
= [3) Unbtiedz | -
A FAp— Startup Parameters Find Filter Show all E
= @ PcLoge | Variable Mapping Channel Address Type Unit Description
= £ Apphication =" OutByted %QB44 USINT OutByted
) Lbrary Manager Madule [EC Objects " BitD %Qu440 BOOL
[E) pc_pre pr) "» Bit1 %QX44.1 BOOL
= (# Tesk Configuration s "» Bit2 %QX#4.2 BOOL
& EtherCaT Task “» Bit3 %QX44.3 BOOL
= & MainTask " Bits %QX44.4 BOOL
&) mcpre " aits %QM445 BOOL
3 HIGH_PULSE_IO "» Bits %446 BOOL
= (@ EtherCAT Master_SoftMotion (EtherCAT Master Softy "» Bit7 %Qx44.7 BOOL
= @ AX_EM_ECM _ET (EtherCAT Save Module) =" OutBytel %QB4S USINT OutBytel
[AX_EM_00160P (Digital Output 16 Bits) "» BitD %QX45.0 BOOL
‘3 SoftMotion General Axs Pool "» Bitl %QX45.1 BOOL
"* Bit2 %QM45.2 BOOL
» 6t %QX45.3 BOOL
"» Bits %QX45.4 BOOL
"» BitS. %QX45.5 BOOL
"» Bits %QX45.6 BOOL
"» Bit7 %QN457 BOOL
OuByteo ResetMapping Always updatevaniables | Use parent device seting
= Create new variable " =Mapto existing variable
< > « >

Figure 4-14 Variable mapping of digital output module

2. After compiling, log in to download the project and run it.

-66-

AX series programmable controller software manual Module Configuration

4.6.3 Analog input module

EtherCAT remote extension module (AX-EM-Rcm-ET) is used to extend the analog input module (AX-EM-4AD) through
the back plate. The instructions are as follows:

1.

Right click AX-EM-ECM-ET in the device panel to add the analog input module (AX_EM_4AD). Control the module
through the multiple sets of variables in the Module/IO mapping tab, as shown in the following figure.

Devices. v 3% [8] pc_rre [axem_oa [ax_em_sap x hd
= 3 Unoted2 hd N
= @ Device T AX7Q Startup Parameters Find Filter Show all -
= 0 Pic Logic | Variable Mapping Channel Address Type Unit Description
= € Application % <] QW34 INT o
D Library Manager Module IEC Objects + "y oHL %QW3s INT cH1
5] ric_pra pRE)] %QW3s INT o2
= @ Task Configuration T 3 %QW37 INT o
& EtherCAT Task P QW38 INT ad
= & ManTask ™o I INT ™o
&) pLc_prG IN0_Fault Code %IW7 INT IN0_Fault_Code

3 HIGH_PULSE_IO INL HIWE INT N1

= (@ EtherCAT_Master_SoftMotion (EtherCAT Master Softh INL_Fault Code S%IWS INT IN1_Fault_Code

= () AX_EM_ECM_ET (EtherCAT Slave Module) w2 WWi T ne
] ax B 0 (ansiog output 16 5t M2 Fait Code WL INT N2 Faut_Code
ijn_‘“D(‘ndogfrvul 16 Bis)

2 SoftMotion General Axs Pool

N3 WIWL2 INT w3

B BB R E
TSI TS IS

IN3_Fault_Code HIW13 INT IN3_Fault_Code

ResetMapping Always updatevariables Use parent device setting

< 3| « >

Figure 4-15 Variable mapping of analog input module

After compiling, log in to download the project and run it.

Variable description: the following table uses channel 0 as an example to illustrate the use of all variables for channel
0.

Table 4-6 Channel 0 variable description

Parameters Value |Valid bit| Variable name | Variable type
sinc5+sincl 00
) sinc5+sincl+enhance 50/60 01
Filter - [1:0] FP
sinc3 10
Reserved
Enable Enable 1 o
channel 0 Disable 0 [0]
Disconnection Enable 1 0
detection Disable 0
ovV-5V 000
ov-10V 001
. -5-5V 010
Conversion
mode -10v-10Vv 011 [4:2]
Channel 0 -20mA-20mA | 100 CHO WORD
configuration OmMA—20mA 101
4mA-20mA 111
Enable 1
Over-limit mark X [5]
Disable 0
Over rgnge Enable 1
detection [6]
enable bit Disable 0
Reserved [15:7]
Channel 0 data Data [15:0] INO
Channel O fault code| .
Indicates the current fault
(See Table 4-8 for |) [15:0] INO_Fault_Code
) information of the module.
details)

-67-

AX series programmable controller software manual Module Configuration

Table 4-7 Mapping of rated range and actual input analog value

Type Input rated range Mapped digital value
-10v-10V -10000—+10000
) ov-10V 0-10000
Analog voltage input
-5V—+5V - 5000-+5000
ov-5v 0-5000
-20mA-20mA -20000-20000
Analog current input 0mA-20mA 0—20000
4mA-20mA 4000-20000
Table 4-8 Channel fault code
Channel 0 Meaning
AO Channel 0 is disconnected.
Al Channel 0 exceeds the limits (exceeds the range of -25V—+25V)
A2 Channel 0 exceeds the upper limit of the range (exceeds the upper limit of the
currently selected voltage range)
A3 Channel 0 exceeds the lower limit of the range (exceeds the lower limit of the
currently selected voltage range)
Channel 1 Meaning
A4 Channel 1 is disconnected.
A5 Channel 1 exceeds the limits (exceeds the range of -25V—+25V)
A6 Channel 1 exceeds the upper limit of the range (exceeds the upper limit of the
currently selected voltage range)
A7 Channel 1 exceeds the lower limit of the range (exceeds the lower limit of the
currently selected voltage range)
Channel 2 Meaning
A8 Channel 2 is disconnected.
A9 Channel 2 exceeds the limits (exceeds the range of -25V—+25V)
AA Channel 2 exceeds the upper limit of the range (exceeds the upper limit of the
currently selected voltage range)
Ab Channel 2 exceeds the lower limit of the range (exceeds the lower limit of the
currently selected voltage range)
Channel 3 Meaning
AC Channel 3 is disconnected.
Ad Channel 3 exceeds the limits (exceeds the range of -25V—+25V)
AE Channel 3 exceeds the upper limit of the range (exceeds the upper limit of the
currently selected voltage range)
AF Channel 3 exceeds the lower limit of the range (exceeds the lower limit of the
currently selected voltage range)

4.6.4 Analog output module

EtherCAT remote extension module (AX-EM-Rcm-ET) is used to extend the analog output module (AX-EM-4DA) through

the back plate. The instructions are as follows:

-68-

AX series programmable controller software manual Module Configuration

1. Rightclick AX-EM-ECM-ET in the device panel to add the analog output module (AX_EM_4DA). Control the module
through the multiple sets of variables in the Module/IO mapping tab, as shown in the following figure.

Devices > 8 x| [5 PcPre [AXEM_ADA x| [Ax_EM a0 ~
rd jﬂz-‘ce (T AX7Y) | Startup Parameters Find Ftar, Show el _
= B0 PLC Logic Variable Mapping Channel Address Type Unit Description
=) Application + " Confiquration CHO %QW22 INT Configuration_CHO
9 Loy Manager Module [EC Objects " Data_CHO %Qw23 INT Dats_CHO
5] pLc_prG (RG) + " Data_Defauitd wQw24 INT Data_Defauitd
= (@ Task Configuraton Iermstion + "y Configuration_CH1 %QW25 INT Configuration_CH1
8 EtherCAT Task + %9 Data_CH1 %QW26 INT Data_CH1
= & ManTask + e Data_Defauit1 %QW27 INT Data_Defauit1
&) pic_pre + " Configwaton CH2 %QW28 INT Configuration_CH2
% HIGH_PULSE_[O + " Data_CH2 %QW28 INT Data_CH2
= (@ EthercAT Master_SoftMotion (EtherCAT Master Soft " Data_Defauit2 wQW30 INT Data_Defauit2
= (i AX_EM ECM ET [EtherCAT Slave Moduie) + " Configuraion CH3 ~ %QW31 INT Configuration_CH3
+ "9 Data_cH3 wQW32 INT Data_CH3
1) AX_EM_4AD (Analog Input 16 Bits) + e Data_Defauit3 QW33 INT Data_Default3
"3 Softhotion General Axis Pool % INTO Fault Code %IW2 INT INTO_Faut_Code
+ W INTi Faut Code %WIW3 INT INT1_Fault_Code
+ % INT2 Fault Code %IW4 INT INT2_Fault_Code
+ INT3 Faut Code %IWS INT INT3_Fault_Code
Reset Mapping Always updatevariables | Use parent device setting
= Create new variable “# =Mapto existing variable
< > < >

Figure 4-16 Variable mapping of analog output module
2. After compiling, log in to download the project and run it.

3. Variable description: the following table uses channel 0 as an example to illustrate the use of all variables for channel
0.

Table 4-9 Channel 0 variable description

Parameters Value | Valid bit Variable name
Enable Enable
channel 0 Disable o]
Disconnectio
. Reserved [1]
n detection
ovV-5V 000
ov-10Vv 001
Conversion -5V-5Vv 010 [4:2]
Channel 0 configuration mode -10vV-10V 011 Configuration_CHO

4mA-20mA 100
OmA-20mA 101
Clear output 00

Output status| Keep output 01

[6:5]
after stop | Output preset 10
value
Reserved [15:7]
Channel 0 code value Data [15:0] Data_CHO
Channel 0 output preset
Output preset value [15:0] Data_DefaultO
value
Channel 0 fault code Indicates the current fault
[15:0] INTO_Fault_Code

(See Table 4-11 for details) information of the module.

-69-

AX series programmable controller software manual Module Configuration

Table 4-10 Mapping of rated range and actual input analog value

Type Input rated range Mapped digital value
-10v-10V -10000—+10000
ov-10V 0-10000
Analog voltage output
-5vV-5Vv -5000—+5000
ov-5Vv 0-5000
4mA-20mA 4000-20000
Analog current output
OmA—-20mA 0-20000

Table 4-11 Channel fault code

Channel 0 Meaning
BO The current output of channel 0 is disconnected.
Bl The voltage output of channel 0 is short-circuited.
Channel 1 Meaning
B2 The current output of channel 1 is disconnected.
B3 The voltage output of channel 1 is short-circuited.
Channel 2 Meaning
B4 The current output of channel 2 is disconnected.
B5 The voltage output of channel 2 is short-circuited.
Channel 3 Meaning
B6 The current output of channel 3 is disconnected.
B7 The voltage output of channel 3 is short-circuited.
Output module power failure Meaning
B8 The 24V power board of the output module is disconnected.

4.6.5 Temperature module

EtherCAT remote extension module (AX-EM-Rcm-ET) is used to extend the temperature module (AX-EM-4PTC) through
the back plate. The instructions are as follows:

1. Right click AX-EM-ECM-ET in the device panel to add the temperature module (AX_EM_4PTC). Control the module
through the multiple sets of variables in the Module/IO mapping tab, as shown in the following figure.

Devices -2 x [5] ncpre [Ax_EM_4PTC x -
=) unbteed2
= ([Device T AX7)
= @0 pLc Logc
= € Anplication
@ Library Manager Module IEC Objects
2] Puc_PrG P
= (@8 Task configuraton
3 EtherCAT Task
= & ManTask
& ric_pre
"3 HIGH PULSE IO
= (@ EtherCAT Master_SoftMotion (EtherCAT Master Softh

Startup Parameters Find Filter Show all

Variable Mapping Channel Address Type Unit Description
Config Wordd %QW22 INT Config_Wordd
T
INT
INT
INT

Information

INT Config_WordS
T Config_Words
INT TemperatureQ
INT Temperature 1
INT Temperature2
T Temperature3

FIIIIITIIIISS

INT Breakup

ResetMapping Always updatevariables | Use parent device setting

= Creste new variable " =Mapto exsting variable

|| < >

Figure 4-17 Variable mapping of temperature module

-70-

AX series programmable controller software manual

Module Configuration

2.
3.

After compiling, log in to download the project and run it.

Table 4-12 Variable description

Variable description: the following tables describe the use of all variables for the four channels.

Parameters Value Valid bit Variable name
Temperature of channel 0 [15:0] TemperatureO
Temperature of channel 1 [15:0] Temperaturel
Temperature of channel 2 [15:0] Temperature2
Temperature of channel 3 [15:0] Temperature3
Disconnection detection Normal 00 [1:0]
result of channel 0 Disconnected 01 '
Disconnection detection Normal 00 3:2]
result of channel 1 Disconnected 01 '
- - - Breakup
Disconnection detection Normal 00 [0:]
result of channel 2 Disconnected 01 '
Disconnection detection Normal 00
- [11:10]
result of channel 3 Disconnected 01
Enable 1
Enable channel 0 - [0]
Disable 0
Displ d < 0 [1]
isplay mode
play oF 1
Internal cold junction 0
Cold junction compensation 2
compensation method External cold junction 1
compensation
Sensor disconnection Enable 1 3]
detection Disable 0
. . Enable 1
Over-limit detection - [4]
Disable 0
B 000
E 001 Config_Word0
J 010
K 011
N 100
R 101
[11:8]
S 110
T 111
Sensor type
PT100 1000
PT500 1001
PT1000 1010
CU500 1011
2-Wire
. 00
3-Wire
. 01 [13:12]
4-Wire
10
(For RTD only)
Filter time 0-100 0-100 [6:0]
Enable 1
Enable channel 1 X [8])
Disable 0 Config_Word1
Displ d < 0 [9]
isplay mode
pay °F 1

-71-

AX series programmable controller software manual

Module Configuration

Parameters Value Valid bit Variable name
Internal cold junction 0
Cold junction compensation [10]
compensation method External cold junction 1
compensation
Sensor disconnection Enable 1 [11]
detection Disable 0
- . Enable 1
Over-limit detection X [12]
Disable 0
B 000
E 001
J 010
K 011
N 100
R 101
[3:0]
S 110
T 111
Sensor type i
PT100 1000 Config_Word2
PT500 1001
PT1000 1010
CU500 1011
2-Wire
. 00
3-Wire
. 01 [5:4]
4-Wire
10
(For RTD only)
Filter time 0-100 0-100 [14:8]
Enable 1
Enable channel 2 X [0]
Disable 0
Displ d < 0 [1]
isplay mode
pay °F 1
Internal cold junction 0
Cold junction compensation 2l
compensation method External cold junction 1
compensation
Sensor disconnection Enable 1 3]
detection Disable 0
_ . Enable 1
Over-limit detection - [4]
Disable 0 Config_Word3
B 000
E 001
J 010
K 011
N 100
S t R to1 [11:8]
ensor type :
P S 110
T 111
PT100 1000
PT500 1001
PT1000 1010
CU500 1011

-72-

AX series programmable controller software manual

Module Configuration

Parameters Value Valid bit Variable name
2-Wire
. 00
3-Wire
. 01 [13:12]
4-Wire
10
(For RTD only)
Filter time 0-100 0-100 [6:0]
Enable 1
Enable channel 3 X [8]
Disable 0
Displ d < 0 [9]
isplay mode
pay °F 1
Internal cold junction 0
Cold junction compensation [10] Config_Word4
compensation method External cold junction 1
compensation
Sensor disconnection Enable 1 [11]
detection Disable 0
. . Enable 1
Over-limit detection X [12]
Disable 0
B 000
E 001
J 010
K 011
N 100
R 101
[3:0]
S 110
T 111
Sensor type)
PT100 1000 Config_Word5
PT500 1001
PT1000 1010
CU500 1011
2-Wire
. 00
3-Wire
. 01 [5:4]
4-Wire
10
(For RTD only)
Filter time 0-100 0-100 [14:8]
. . 250ms 01
Sampling period of
500ms 10 [1:0]
channel 0
1000ms 11
. . 250ms 01
Sampling period of
500ms 10 [3:2]
channel 1
1000ms 11)
Config_Word6
. . 250ms 01
Sampling period of
500ms 10 [5:4]
channel 2
1000ms 11
. . 250ms 01
Sampling period of
500ms 10 [7:6]
channel 3
1000ms 11

-73-

AX series programmable controller software manual

Module Configuration

Table 4-13 Supported sensor types and measurement range

Temperature range in Temperature range in
Iltem Sensor name))
Celsius Fahrenheit
PT100 -200.0°C-850°C -328.0°F-1562.0°F
. PT500 -200.0°C-850°C -328.0°F-1562.0°F
Thermal resistor type
PT1000 -200.0°C-850°C -328.0°F-1562.0°F
Cu100 -50.0°C-150°C -58.0°F-302.0°F
B 200.0°C-1800°C 392.0°F-3272.0°F
E -270.0°C-1000°C -454.0°F-1832.0°F
N -200.0°C-1300°C -328.0°F-2372.0°F
J -210.0°C-1200°C -346.0°F-2192.0°F
Thermocouples type
K -270.0°C-1370°C -454.0°F-2498.0°F
R -50.0°C-1765°C -58.0°F-3209.0°F
S -50.0°C-1765°C -58.0°F-3209.0°F
T -270.0°C-400°C -454.0°F-752.0°F

4.7 Priority setting of each module (recommended value)

4.7.1 Setting priority

If the created project contains multiple functional modules, create multiple tasks and set the task priority as follows. Table

4-14 shows the recommended values for task priority.

Devices

v 3 X

=3 Untitled?
= () Device (INVT AX7X)
=81 pLC Logic
=1} Application

-

m Library Manager
[E] PLC_PRG (PRG)
= E Task Configuration

EtherCAT Task
e

C_PRG

@ Task
2 HIGH_PLLSE_IO

+) EtherCAT_Master_SoftMotion (EtherCAT Master Softh
. SoftMotion General Axis Pool

[£] PLc_PRG

Configuration

£ Task

Priority (0..31): 0

Type
(EJ Cydic v

Watchdog
[CJEnable

Time (e.g. t#200ms)

Sensitivity

4k Add Call 3 Remove Call [Change Call Move Up

& MainTask x

Interval (e.g. t£200ms) |4

POU
@] PLC_PRG

Comment

Figure 4-18 Example of task project priority settings

Table 4-14 Setting priority

Function module

Recommended priority

PlcCfg module 31
ModbusTCP 15-30
ModbusRTU 15-30

High-speed 1/O 1-15

Analog input/output 1-15
Temperature module 1-15
EtherCAT 0

-74-

AX series programmable controller software manual Module Configuration

4.7.2 Configuring sub-device bus cycle options

Under the Controller settings > Bus cycle > Bus cycle task of the AX7x device, the Bus cycle task list provides the
tasks defined in the task configuration of the current valid project (such as "MainTask", "EtherCAT Master”). Select one of
the tasks as the bus cycle of the current project, or select the option <unspecified>, which indicates that the shortest task
cycle time or the fastest execution cycle will be applied. You can switch to another settings, but be sure to note the
following.

Note: Before modifying the <unspecified> setting, be aware that it is a default action defined by the device description.
By default, the task can be defined with a shortest cycle time or a longest cycle time. Please check this carefully before
applying this setting.

To improve the stability of the system when using expansion modules and EtherCAT modules (especially the
EtherCAT_Master_SoftMotion module), you should select the task corresponding to each module in EtherCAT 1/O
Mapping > Bus Cycle Options. The reference program is as follows.

B untitled2. project* - Invtmatic Studio

Fle Edit View Project Build Online Debug Tools Window Help

zEH & @ 40 4 AL 3 pd Y | Application [Device: PLC Logic] ~ @
Devices v 3 x & MainTask [{) EtherCAT_Master_SoftMotion X
=13 untited? - ;
General Bus Cyde Options
=gy O IVT AX7X
B evice (N) Bus cydle task EtherCAT _Task ok
T ﬂu PLC Logic Sync Unit Assignment Use parent bus cyde setting
=1} Application EtherCAT Task
MainTask
m Library Manager Log

\£] PLC_PRG (PRG)
= E Task Configuration
& EtherCAT Task
= @ MainTask
&) pLc_PrG Status
3 HIGH_PULSE_IO
= \;j EtherCAT_Master_SoftMotion (EtherCAT Master SoftN
B INVT_DA200_262 (DA200-N EtherCAT(CoE) Drive
% SoftMotion General Axis Pool

EtherCAT IfO Mapping

EtherCAT IEC Objects

Information

Figure 4-19 Expansion module bus cycle task setting

-75-

AX series programmable controller software manual Device Diagnosis

5 Device Diagnosis

AX7x equipment diagnostic information is reflected in three ways, namely fault indicator, digital tube and diagnostic code.
Fault indicators show the system and bus error. Digital tubes display the fault code of a specific function module.
Diagnostic codes further indicate the specific types of faults, which can be generally searched by upper computer

software.

5.1 Fault indicator

The AX7x fault indicator is mainly composed of two parts. The first part is mainly the system and bus indicator lights. The
second part is mainly the high-speed input and output indicators.

Dial switch Digital tube
o Input/Output
System indicator —{— & H Pisraia f‘%] indicator
—— T3 — S
© = fal “[e]"
8700 WUN
[e) ™
HHE: =1 |
i3]l ©)
l [1 B i
O J|m =
H 8: i
'H T
& & |
=]
I
g

g

Figure 5-1 Fault indicator diagram

5.1.1 System and bus fault indicator

Table 5-1 System and bus fault indicator

Fault indicator name Error type
SF System fault
BF Bus communication fault
CAN CAN bus fault
ERR Module fault

Note: When connecting multiple programmable controllers, you can click the Wink button on the software platform to
observe the simultaneous flashing of the SF, BF, CAN, and ERR indicators to identify the device.

5.1.2 High-speed input/output indicator

If the output/input of the port is at a high level, the indicator corresponding to the port is on, and if the output/input is at a
low level, the corresponding indicator is off.

-76-

AX series programmable controller software manual Device Diagnosis

5.2 Fault code

Fault)
Module Fault type Solution
code
. Check the underlying network
16#10 Error setting local new IP i o
configuration file.
16411 Error setting local new subnet Check the underlying network
mask configuration file.
16412 CPU module Failed to read the local IP and Check the underlying network
PlcCfg subnet mask configuration file.
16#13 Abnormal time setting format Check the time setting format.
16#14 Error setting motion controller time [Check the underlying code.
Error getting motion controller real .
16#15] Check the underlying code.
time
Check whether the underlying
16#20 Failed to open serial port COM1 |serial port number corresponds
to the hardware.
) . Check the baud rate setting of
16#21 Baud rate setting failed

the slave node

Check the specific error code of
COM1 485

Data bit, stop bit or parity bit setting|Invtmatic Studio ErrorID. Data bit:
16#22 ModbusRTU_Slavel

failed ErrorlD=3, check bit ErrorID=4,
stop bit ErrorlD=5.
System error Err_Sym, or slave

16#23 Slave function enable failed)

enable is turned on.

) Check detailed parameter

16#24 Slave read and write error .

settings

Check whether the underlying
16#25 Failed to open serial port COM1 serial port number corresponds

to the hardware.

. . Check the SlavelD number

16#26 SlavelD setting failed

settings of the master node.
Check whether the data bit
Data bit, stop bit or parity bit setting|setting value is 7 or 8, whether
failed the check bitis 0, 1 or 2, and
whether the stop bitis 1 or 2.

16#27

COM1 485

System error Err_Sym, or master
16#28 | ModbusRTU_Masterl |Master function enable failed Y =

enable is turned on.

) Check that the master-slave
One of the the following goes o
)) initialization parameter
wrong: master read/write coil, read] o .
16#29]])) configuration is consistent and
holding register, write a single o
]])) that the hardware connection is
register, write multiple registers
correct.

) Ensure that only one of the
Two function block enabled at the

16#2A) function block is enabled in the
same time.
program
16#30 COM2 485 Failed to open serial port COM2 |Check whether the underlying

-77-

AX series programmable controller software manual

Device Diagnosis

Fault)
Module Fault type Solution
code
ModbusRTU_Slave2 serial port number corresponds
to the hardware.
) . Check the baud rate setting of
16#31 Baud rate setting failed
the slave node
Check the specific error code of
16432 Data bit, stop bit or parity bit setting|Invtmatic Studio ErrorID. Data bit:
failed ErrorID=3, check bit ErrorID=4,
stop bit ErrorID=5.
. . System error Err_Sym, or slave
16#33 Slave function enable failed)
enable is turned on.
) Check detailed parameter
16#34 Slave read and write error i
settings
Check whether the underlying
16#35 Failed to open serial port COM2 |serial port number corresponds
to the hardware.
. . Check the SlavelD number
16#36 SlavelD setting failed i
settings of the master node.
Check whether the data bit
16437 Data bit, stop bit or parity bit setting|setting value is 7 or 8, whether
failed the check bitis 0, 1 or 2, and
whether the stop bitis 1 or 2.
COM2 485
. . System error Err_Sym, or master
16#38 ModbusRTU_Master2 [Master function enable failed i
enable is turned on.
) Check that the master-slave
One of the the following goes e
;) initialization parameter
wrong: master read/write coil, read i . .
16#39) i)) configuration is consistent and
holding register, write a single L
) . . . that the hardware connection is
register, write multiple registers
correct.
i Ensure that only one of the
Two function block enabled at the . . .
16#3A) function block is enabled in the
same time.
program
. Check the underlying
16#60 Error configuring slave IP i i .
corresponding configuration.
16#61 Port setting error Check the port settings
Failed to listen to sockets (failed to .
]) Check the corresponding
16#62 create socket, failed to bind socket, ! .
. . configuration.
failed to listen to socket)
modbusTCP_Slave -
- . . Check the corresponding
16#63 Failed to accept client) .
configuration.
. . Check the corresponding
16#64 Failed to accept client data) .
configuration.
Check the corresponding
16#65 Modbus reply error (modbus_reply)) i
configuration.
) Check the IP setting or whether it
16#66 Error setting slave IP or port) .
is the default unit number.
16#67 Failed to set slave node Check the parameter settings.
modbusTCP_Master . Check the parameter settings,
16#68 Failed to connect slave node
such as slave IP or port.
16#69 Write slave register failure Check the parameter settings.
16#6A Read slave register failure Check the parameter settings.

-78-

AX series programmable controller software manual

Device Diagnosis

Fault)
Module Fault type Solution
code
- Check whether the wires are
16#A0 Channel 0 is disconnected.
connected properly.
Channel 0 exceeds the limits (that
is, the voltage exceeds the range of . .
g g Check if the input voltage
16#A1 -25V—+25V, and the current .
(current) is out of range.
exceeds the range of -104mA-
104mA)
Channel 0 exceeds the upper limit .
Reduce the input voltage
of the range (exceeds the upper .
16#A2 . (current) value, or use a wider
limit of the currently selected .
range of conversion modes.
voltage range)
Channel 0 exceeds the lower limit .
Increase the input voltage
of the range (exceeds the lower .
16#A3 - (current) value, or use a wider
limit of the currently selected .
range of conversion modes.
voltage range)
- Check whether the wires are
16#A4 Channel 1 is disconnected.
connected properly.
Channel 1 exceeds the limits (that
is, the voltage exceeds the range of . .
Check if the input voltage
16#A5 -25V—+25V, and the current current) i Outpo o eg’
exceeds the range of -104mA— ge-
104mA)
Channel 1 exceeds the upper limit .
Reduce the input voltage
of the range (exceeds the upper .
16#A6 - (current) value, or use a wider
limit of the currently selected .
range of conversion modes.
Analog output module |voltage range)
AX-EM-4AD Channel 1 exceeds the lower limit .
Increase the input voltage
of the range (exceeds the lower .
16#A7 . (current) value, or use a wider
limit of the currently selected .
range of conversion modes.
voltage range)
- Check whether the wires are
16#A8 Channel 2 is disconnected.
connected properly.
Channel 2 exceeds the limits (that
is, the voltage exceeds the range of . .
g g Check if the input voltage
16#A9 -25V—+25V, and the current (current) is out of range
exceeds the range of -104mA— ge.
104mA)
Channel 2 exceeds the upper limit .
Reduce the input voltage
of the range (exceeds the upper .
16#AA . (current) value, or use a wider
limit of the currently selected .
range of conversion modes.
voltage range)
Channel 2 exceeds the lower limit .
Increase the input voltage
of the range (exceeds the lower .
16#Ab . (current) value, or use a wider
limit of the currently selected .
range of conversion modes.
voltage range)
- Check whether the wires are
16#AC Channel 3 is disconnected.
connected properly.
Channel 3 exceeds the limits (that
is, the voltage exceeds the range of . .
g g Check if the input voltage
16#Ad -25V—-+25V, and the current .
(current) is out of range.
exceeds the range of -104mA-—
104mA)

-79-

AX series programmable controller software manual

Device Diagnosis

Fault)
Module Fault type Solution
code
Channel 3 exceeds the upper limit)
Reduce the input voltage
of the range (exceeds the upper .
16#AE o (current) value, or use a wider
limit of the currently selected)
range of conversion modes.
voltage range)
Channel 3 exceeds the lower limit .
Increase the input voltage
of the range (exceeds the lower)
16#AF o (current) value, or use a wider
limit of the currently selected .
range of conversion modes.
voltage range)
. |Check whether the current
The current output of channel 0 is o
16#b0 . channel is disconnected and
disconnected. o
reconnect it if it is
. |Check whether the voltage
The voltage output of channel 0 is) o
16#bl o channel is short-circuited. If so,
short-circuited.)
restore it to normal.
. |Check whether the current
The current output of channel 1 is L
16#b2 . channel is disconnected and
disconnected. e
reconnect it if it is
. |Check whether the voltage
The voltage output of channel 1 is) o
16#b3 L channel is short-circuited. If so,
short-circuited.)
restore it to normal.
. |Check whether the current
Analog output module |The current output of channel 2 is L
16#b4 . channel is disconnected and
AX-EM-4DA disconnected. o
reconnect it if it is
. |Check whether the voltage
The voltage output of channel 2 is) .
16#b5 o channel is short-circuited. If so,
short-circuited. .
restore it to normal.
. |Check whether the current
The current output of channel 3 is o
16#b6 . channel is disconnected and
disconnected. e
reconnect it if it is
. |Check whether the voltage
The voltage output of channel 3 is) .
16#b7 L channel is short-circuited. If so,
short-circuited. .
restore it to normal.
Check whether the 24V power
The 24V power board of the output)
16#b8 o supply is normal and whether
module is disconnected. . .
there is reverse connection.
Channel 0 exceeds the upper limit |Check whether the set
16#CO of range (the actual temperature |[temperature upper limit is greater
exceeds the set upper limit) than the actual value.
Channel 0 exceeds the lower limit |Check whether the set
16#C1 of range (the actual temperature |temperature lower limit is smaller
exceeds the set lower limit) than the actual value.
Channel 1 exceeds the upper limit |Check whether the set
Temperature module o
16#C2 AX-EM-APTC of range (the actual temperature |temperature upper limit is greater
exceeds the set upper limit) than the actual value.
Channel 1 exceeds the lower limit |Check whether the set
16#C3 of range (the actual temperature |temperature lower limit is smaller
exceeds the set lower limit) than the actual value.
Channel 2 exceeds the upper limit |Check whether the set
16#C4 of range (the actual temperature |temperature upper limit is greater
exceeds the set upper limit) than the actual value.

-80-

AX series programmable controller software manual Device Diagnosis

Fault)
Module Fault type Solution
code
Channel 2 exceeds the lower limit |Check whether the set
16#C5 of range (the actual temperature |temperature lower limit is smaller
exceeds the set lower limit) than the actual value.
Channel 3 exceeds the upper limit |Check whether the set
16#C6 of range (the actual temperature |temperature upper limit is greater
exceeds the set upper limit) than the actual value.
Channel 3 exceeds the lower limit |Check whether the set
16#C7 of range (the actual temperature |temperature lower limit is smaller

exceeds the set lower limit) than the actual value.

o) Check whether the set
Over-limit setting error (set upper o
16#C8 o . |temperature upper limit is greater
limit is smaller than the lower limit)

than the lower limit.

Channel 0 is disconnected.

16#C9

(Reserved)

Channel 1 is disconnected.
16#CA

(Reserved)

Channel 2 is disconnected.
16#CB

(Reserved)

Channel 3 is disconnected.
16#CC

(Reserved)

-81-

AX series programmable controller software manual Controller Program Structure and Execution

6 Controller Program Structure and Execution

6.1 Program structure

The software model is represented by a hierarchical structure. Each layer implies many characteristics of the underlying
layer. The software model describes the basic software elements and their interrelationships. These software elements
contain: devices, applications, tasks, global variables, access paths, and application objects. Figure 6-1 shows their
internal structure, which is consistent with the software model of the IEC 61131-3 standard.

Device

Application Application

Task 1 Task 2 Task 3 Task 4

Program 1 Program 2 Program/; Program 4

FB1 FB2 FB1 FB2

Global and direct address variable

Access path

y

\ J

Communication function

Figure 6-1 Program hierarchical structure
6.2 Task

A program can be written in different programming languages. A typical program consists of a number of interconnected
function blocks that can exchange data with each other. The execution of different parts of a program is controlled by
"tasks". Tasks can be configured to cause a series of programs or blocks to execute periodically or to be triggered by a
specific event to start execution.

The Task Manager tab in the device tree can be used to control the execution of other subprograms within the project, in
addition to the specific controller_PRG program. A task is used to specify the properties of a program organization unit at
run time. It is an execution control element with the ability to be called. Multiple tasks can be established in a task
configuration, and multiple program organization units can be called in a task. Once the task is set, it can control the
program to execute periodically or to be triggered by a specific event to start execution.

In the task configuration, define it with name, priority, and startup type of the task. This startup type can be defined either
by time (cyclic, random) or by the timing of an internal or external trigger task, such as a rising edge of a Boolean global
variable or a particular event in the system. For each task, you can set a sequence of programs to be started by the task. If
this task is executed in the current cycle, these programs will be processed within one cycle. The combination of priority
and conditions will determine the timing of task execution. The task setting interface is shown in Figure 6-2.

-82-

AX series programmable controller software manual

Controller Program Structure and Execution

| Devices - 3 x

=13 Untitled2 -
= [Device VT AX7X)
=8 pLC Logic
= I} Application
m Library Manager
=] PLC_PRG (PRG)
:
EtherCAT _Task
= & MairTask
& pLc_PRG
% HIGH_PULSE_IO
= I‘_'] EtherCAT_Master_SoftMotion (EtherCAT Master Softl
B INVT_DA200_262 (DA200-N EtherCAT(CoE) Drive)
. SoftMotion General Axis Pool

<

POUs > 3 X
=13 Untited2 -l
G‘ Project Settings

& MainTask x| [

Configuration

EtherCAT_Master_SoftMotion

Priority (0..31): [0

Type

@ Task Configuration

Interval (e.g. t#200ms) |t#20ms

Cydic v

Watchdog
Enable

Time (e.g. t#200ms) [t¥200ms|

Sensitivity 1

4k Add Call < Remove Call (& Change Call Move Up Move Down

*=Open P

POU
&) PLC_PRG

Comment

Figure 6-2 Task configuration interface

The programmer must follow the following rules:

%
<&
<&
<

<>

The maximum number of cyclic tasks is 100

The maximum number of free running tasks is 100.

The maximum number of event-triggered tasks is 100.

Depending on the target system, the PLC_PRG may be executed as a free program under any circumstances,
instead of being manually inserted into the task configuration.

Programs are processed and called in a top-down order within the task editor.

6.3 Program execution

The following figure describes in detail the complete process of program execution inside the AX7x programmable
controller. The main process includes input sampling, program execution and output refresh.

Read input A
Y 1. Input sample
Image register
h J
A
y
Task 1 2. Program
Task 2 execution
A \ J
. A
Image register
Y 3. Output refresh
Write output
\ J

Figure 6-3 Controller execution

-83-

AX series programmable controller software manual Controller Program Structure and Execution

1) Input sampling

At the beginning of each scan cycle, the controller detects the state of the input device (such as switch, button) and writes
the state to the input image register area. During program execution, the running system reads data from the input image
area for program resolution. It is important to note that the input refresh only occurs at the beginning of a scan. During the
scan, the input state will not change even if the output state changes.

2) Program execution

During the program execution phase of the scan cycle, the controller reads the status and data from the input image area
or output image area and performs logical and arithmetic operations according to the commands. The operation results
are stored in the corresponding unit in output image area. In this phase, only the contents in the input image registers
remain unchanged, and the contents in other image registers will change with the execution of the program.

3) Output refresh

During the output refresh phase, also known as the write output phase, the controller transmits the state and data in the
output image area to the output point, and isolates and amplifies the power in a certain way to drive the external load. The
programmable controller completes not only the tasks of the above three phases, but also auxiliary tasks such as internal
diagnosis, communication, public processing, and input/output services in a scan cycle.

The AX7x programmable controller repeats the process of 1) to 3) above, and the time for each repetition is one work
cycle (or scan cycle). It can be seen from the scanning method of the controller that the controller has a shorter scanning
time to complete the control task to quickly respond to the change of input and output data, and the duty cycle is generally
controlled within the order of ms. Therefore, it is necessary to develop a stable, reliable and fast-response real-time
system for AX7x programmable controller operation system.

Since the AX7x programmable controller adopts a cyclic working mode, the input signal will only be refreshed at the
beginning of each cycle, and the output will be concentrated at the end of each cycle. It will inevitably produce a lag
between the output signal and the input signal. It takes a while for a signal input to change from the input of the AX7x
programmable controller to the output of the controller to respond to the change in the input signal. Lag time is an
important parameter that should be understood when designing AX7x programmable controller control system. Generally,
the lag time is related to the following factors:

< Filter time of the input circuit. It is determined by the time constant of the hardware RC filter circuit. The input lag time
can be adjusted by changing the time constant. For example, Table 6-1 shows the technical parameters of the
AX-EM-1600D digital input module, where "port filter time" indicates that the filter time of this input module is 10ms.
Table 6-1 AX-EM-1600D Digital input module parameters
Item Specifications
Input channel 16
Input connection mode 18-point terminal
Input voltage level 24V (up to 30V)
Input current (typical) 4.7mA
ON voltage >15VDC
OFF voltage <5VDC
Port filter time 10ms
Input resistance 5.4kQ
Input signal form Voltage DC input
Isolation method Optocoupler
Input dynamic display When the input is valid, the indicator is on.
< Lag time of the output circuit. It is related to the output circuit mode. Generally, the lag time of the relay output mode

is about 10ms, and the lag time of the transistor output mode is less than 1ms.

< Working mode of the controller cyclic scanning.

< Arrangement of statements in the user program.

-84-

AX series programmable controller software manual Controller Program Structure and Execution

To allow readers to better understand the whole process, the following is a simple example of the ladder diagram program
to show its input and output and how the lagging is produced The program logic is shown in Figure 6-4.

bInput bOutput

| I []

Figure 6-4 AX7x programmable controller program

blnput has a hardware mapping relationship with the external input button. When the button is pressed, binput is ON.
bOutput has a hardware mapping relationship with the coil of the external relay. When bOutput is ON, the coil of the relay
will also be energized. Within the AX7x programmable controller, the handling relationship is shown in Figure 6-6. binput
is not immediately turned ON when the input button is pressed. Because the input sampling is only executed at the
beginning of a cycle and the button signal has missed the sampling phase, it usually will be executed at the beginning of
the next cycle. In the program in Figure 6-6, the state of binput is assigned to bOutput. Since there is a certain program
calculation during the program running, the bOutput needs a certain processing time of the program to be set to ON. Since
the output refresh occurs at the end of the program process, it is at the end of the cycle that the bOutput passes its value
to the actual hardware via the output refresh function before the coil is finally energized. The following figure is a relatively
ideal state, with the final output having only one cycle of latency.

Program cycle time
Program processing time
% / - : Input refresh

0 END;0 END;0 l:l : Output fresh

. OFF
Button input o |
[[|
OFF
blnput I . |
! | .
OFF I |
bOutput }
|
FF
Coil output o : =
Delay time
(Min. 1 cycles)

Figure 6-5 Fastest output case

In addition, we should also consider the worse situation. When a cycle of input sampling has just ended, the external input
button is ON at this time. Since the input signal needs to be loaded into the input image area at the beginning of the next
cycle and the actual output will not be loaded into the output image area until the end of the second cycle, the whole
process is shown in Figure 6.7. In this case, the output delay is nearly 2 cycles, which is the output with longest delay

Program cycle time
Program processing time
% / - : Input refresh

0 END:0 END:0 |:| : Output refresh

time.

) OFF
Button input ' |
[| |
FF
binput : o | ' |
| 1
|
OFF
bOutput 4 |
|
OFF
Coil output I\ ~
Delay time
(Min. 2 cycles)

Figure 6-6 Slowest output case

-85-

AX series programmable controller software manual Controller Program Structure and Execution

6.4 Task execution type

At the top of the task configuration tree, there is a Task Configuration tab, which shows every defined task by their
names. The call of POUs for specific tasks is not displayed in the task configuration tree. Each individual task can be
edited and configured for the type of execution, which includes Cyclic, Event, Freewheeling, and Status. See Figure 6-7

for details.

Type

@3 Cydic

& Event
¢ Bxternal

5, Freewheeling
Status

Figure 6-7 Task execution type
1) Cyclic

The processing time of the program will vary depending on whether the commands used in the program are executed or
not. Therefore, the actual execution time varies with each scan cycle. By using the cyclic mode, the program can be
executed repeatedly for a certain cycle time. Even if the execution time of the program changes, the refresh interval can
be maintained. It is recommended that you give priority to the cyclic start mode. For example, if you set the corresponding
task to the Cyclic mode and set the interval to 10ms, the actual program execution timing is shown in Figure 6-8.

Actual execution time of
the program

Waiting time
END END END END
Button input ! ! ! ! L1
8ms 2ms 6ms 4ms 7ms 3ms 8ms 2ms
> <€ > <€ > < > <€
10ms 10ms 10ms 10ms

Y
& Fixed cycle setting time

Figure 6-8 Cyclic execution sequence

If the actual execution time of the program is less than the set cyclic time, the remaining time is used for waiting. If there
are low-priority tasks in the application that have not been executed, the remaining waiting time is used to execute these
tasks. The priority of the task will be described in detail later.

2) Freewheeling

Tasks are processed as soon as the program starts running, and tasks will be automatically restarted in the next cycle
after the end of a running cycle. This execution mode is not affected by the program scan cycle. That is to ensure that the
last instruction of the program is executed each time before entering the next cycle. Otherwise, the program cycle will not
end. Figure 6-9 shows the timing of freewheeling sequence.

Actual execution time

f of the program
END:0 END;0 END;0 END;0 END;0 END
| | |

| |

H T T H
8ms 6ms 7ms 3ms 8ms ms

Figure 6-9 Timing of freewheeling sequence

Since the freewheeling execution mode does not have a fixed task time, the execution time may be different each time.
Therefore, the real-time performance of the program cannot be guaranteed, and this mode is seldom used in practical

applications.

-86-

AX series programmable controller software manual Controller Program Structure and Execution

3) Event
If the variable in the event area gets a rising edge, the task begins.
4) Status

If the variable in the event area is TRUE, the task begins. The Status mode is similar to the Event mode, except that the
task will be executed when the trigger variable of status triggering is TRUE, and will not be executed when it is FALSE.
The event trigger only collects the effective signal of the rising edge of the trigger variable. Figure 6-10 compares the
event and status trigger modes, and the green solid line is the Boolean variable status selected by the two modes. Table
6-2 shows the comparison result.

I2 I3 |4

Figure 6-10 Task input trigger signal

Different types of tasks showed different responses at sampling points 1-4 (purple). The trigger condition of Status mode
is fulfilled when a specific event is TRUE, but an event-driven task requires the event to change from FALSE to TRUE. If
the sampling frequency of the task is too low, the rising edge of the event may not be detected.

Table 6-2 Comparison result between Event and Status trigger modes

Execution point 1 2 3 4
Event No execute Execute Execute Execute
Status No execute Execute No execute No execute

6.5 Task priority
1) Task priority setting

You can set the priority of the task, with a total of 32 levels (a number from 0 to 31, with O the highest priority and 31 the
lowest priority). When a program is executing, tasks with high priority takes precedence over tasks with low priority. A task
with high priority O can interrupt the execution of lower priority programs in the same resource, so that the execution of the
program with low priority is slowed down.

Note: When assigning task priority levels, do not assign tasks with the same priority. If there are other task views that
precede tasks with the same priority, the result may be uncertain and unpredictable.

If the task type is "Cyclic", it will be executed in a cycle according to the time set in "Interval”. The specific settings are
shown in Figure 6-11.

Configuration

Priority (0.31): |1l

Type
& Cydic v Interval (e.g. t£200ms) |t#20ms

Figure 6-11 Cyclic mode configuration
Example: Suppose there are 3 different tasks with three different priority levels, the specific assignments are as follows.
-: Task 1 with Priority set to 0 and Interval to 10ms
-: Task 2 with Priority set to 1 and Interval to 30ms

-: Task 3 with Priority set to 2 and Interval to 40ms

-87-

AX series programmable controller software manual Controller Program Structure and Execution

Inside the controller, the timing relationship of each task is shown in Figure 6-13, and the specific description is as follows:

0-10ms: Execute Task 1 first (highest priority), and if the program is finished within this cycle, the remaining time will be
used to execute the Task 2 program. However, if Task 2 has not been fully executed afterl0Oms, Task 2 will be interrupted
because Task 1 is executed every 10 milliseconds and has a highest priority.

10-20ms: Execute the programs in Task 1 first. If there is any time left, execute the unfinished Task 2 in the previous
cycle.

20-30ms: Since Task 2 is executed every 30ms and Task 2 has been finished within 10-20ms, there is no need to
execute task 2 at this time, just execute Task 1 once.

30-40Ms: Similar to before.

40-50ms: Task 3 appears at this time. Since Task 3 has the lowest priority, Task 3 can only be executed after ensuring
that Task 2 has been thoroughly executed.

0 10 20 30 40 50 t(ms)

Task 1 interrupts Task 1 interrupts
Task2. Task 3.

Figure 6-12 Task interrupt execution order
2) AX7x task priority configuration

When the upper computer software of AX7x controller creates a new standard project, MainTask is created by default in
the task configuration with a priority of 0. The priority of newly created tasks is also 0 by default, but to ensure that
important tasks such as motion control are prioritized, the performance of the controller can be used appropriately in some
applications that require high-performance motion control (MC). The following table shows the recommended task priority
order setting (if there is only one task, the task priority can be set at will):

Table 6-3 Task priority configuration

Task Type Recommended Priority
PlcCfg module 31
ModbusTCP 15-30
ModbusRTU 15-30
High-speed 1/O 1-15
Analog input/output 1-15
Temperature module 1-15
EtherCAT 0

The smaller the priority value, the higher the priority. POU with a higher priority can interrupt the execution of POU with a
lower priority, as shown in Figure 6-13, where ECT stands for EtherCAT.

-88-

AX series programmable controller software manual Controller Program Structure and Execution

ETC cycle (priority0) ETC cycle ETC cycle ETC cycle ETC cycle
UPR | M UPR | M UPR | M UPR | M UPR | M
10 G c 10 G c 10 G c 10 G c 10 G c
Execution 4 Execution Execution Execution Execution

complete i complete complete complete complete
i sk cycle (priority16)

—

L 4

Pause 10 | UPRG.. Pause UPRG Pause 10 | UPRG..

Execution
complete

Task cycle (priority 17)

Pause UZR Pause ..UPRG.. Pause UPR Execution

complete

Figure 6-13 POU execution sequence
As shown in Figure 6-13,

When the controller executes a task, there is a time alignment point that is not observed by the user, as shown on the left
side of the figure above. Starting at this point, the execution will start in the order of highest priority -> second highest
priority -> lowest priority.

A low-priority task may be interrupted by a high-priority task while it is being executed, and when the execution of the
high-priority task is complete, the interrupted task with low-priority will continues.

The EtherCAT task is the highest priority task, which is entered according to the EtherCAT cycle, and all POUs within the
task are executed once before executing the lower priority task.

3) Requirements for execution cycle setting in task configuration

The AX7x system upper computer software uses multitasking to execute the "tasks" of the user program, and each "task”
is assigned a different execution cycle. Some global variables may be accessed and modified in different POUs, so the
interactive synchronization of global variables should be carried out at the "time alignment point" of the task. For the cycle
of a cyclic task setting, the cycle time of different cyclic task types is an integer multiple.

For example, the EtherCAT task cycle time is set to 4ms, 8ms, while the normal cycle is set to 400ms, and the cycle of
lower priority is set to 100ms or 200ms. Do not set the EtherCAT task cycle to 5ms, 7ms, 9ms and so on, which may cause
non-integer multiple of 2.

4) Configuring sub-device bus cycle options

Under the Controller settings > Bus cycle > Bus cycle task of the controller device, the Bus cycle task list provides the
tasks defined in the task configuration of the current valid project (such as "MainTask", "EtherCAT Master”). Select one of
the tasks as the bus cycle of the current project, or select the option <unspecified>, which means that the shortest task
cycle time or the fastest execution cycle will be applied. You can switch to another settings, but be sure to note the
following.

Note: Before modifying the <unspecified> setting, be aware that it is a default action defined by the device description. By
default, the task can be defined with a shortest cycle time or a longest cycle time. Please check this carefully before
applying this setting.

Therefore, select the task corresponding to each module in EtherCAT I/O when using expansion modules and EtherCAT
modules (especially the EtherCAT_Master_SoftMotion module) to improve the stability of the system. The reference
program is shown in Figure 6-14.

-89-

AX series programmable controller software manual Controller Program Structure and Execution

B Untitled2 project® - Invtmatic Studio

Fle Edit View Project Buld Online Debug Took Window Help

e E & [R = (7' | ¥4 | Application [Device: PLC Logic] ~ O ${ -
Devices > B %) EtherCAT_Master_SoftMotion X 5] POU £ Task & Task 1 o
=) Unbitled2 ‘| =
General Bus Cyde Optons
= |3 v VT AX7X]
({ pevice T AX7) Bus cyde task EtherCAT Task =
= Bl pcioge Sync Unit Assignment Use parent bus cyde setting
= £ Apphcation EtherCAT Task
ManTask
D Lorary Manager Log Task
[PLc_pRG (PRG)

(§) PoU (PRG) EtherCAT 1/O Mapping

= @ Task Configuration
& EtherCAT Task

EtherCAT IEC Objects

= & MainTask Status
@) pLC_PRG
& Tosk Information
& Task_1
'8 HIGH_PULSE IO
= (@ EthercAT Master_SoftMotion (EtherCAT Master Soft
@ pwT_DA200_262 (DA200-N EtherCAT(CoE) Drive|
"3 SoftMotion General Ais Pool

<

POUS v 2 x

=) Unttled2 =]
B Project settings

Messages -Total 0 error(s), 0 warning(s), 3 message(s)
Devices + [© 0 error(s) [® 0 warning(s) [@ 3 message(s) | % ¥

Description Project Object]

Lastbuid: @ 0 ® 0 Precompie Project user: (nob

Figure 6-14 EtherCAT bus cycle task setting

6.6 Operation of multiple subprograms

In practical projects, the program can usually be divided into many subprograms according to the control flow or the object
of the equipment. The designer can program each processing unit separately. As shown in Figure 6-15, the main program
is divided into multiple subprograms with different processes through the control flow. The main purpose of the division is
to make the main program clearer and facilitate future debugging.

Main Program

PLC_PRG

Sub-program
i Control flow 1 | PRG1 Control flow 1
,,,,,,,,,,,,, :r

% After program
o | spliting Sub-program
- Control flow2 | »> PRG2 Control flow 2
,,,,,,,,,,,,, r,,,,,,,,,,,,‘

l

|

}

}

|

|
R \ A
- Control flown | Subl;;l):{rg%ram Control flow n

Figure 6-15 Split in multiple subprograms by process

The right part of Figure 6-15 displays the subprograms PRG1, PRG2...PRGn classified by the flow. The left part of the
figure displays the main program PLC _PRG. The PRG1...PRGn subprograms can be called separately in the main
program. There are two ways to run multiple subprograms. One is to add subprograms in the task configuration. The other
is to call subprograms from the main program, which is more common and flexible.

1) Add subprograms in task configuration

Users can add subprograms in the task configuration page to realize the operation of multiple programs. Click Add Call to

-90-

AX series programmable controller software manual Controller Program Structure and Execution

add subprograms in the order in which they are executed. As shown in Figure 6-16, after adding subprograms, the tasks
will be executed in the top-to-bottom order specified by the user, or you can edit the order manually by using the Move Up
and Move Down functions.

4k Add Call Remove Cal hange Call Move Up Move Down Open POL
POU Comment

&) pLC_PRG

] POU

& POU_1

Figure 6-16 Add subprograms in a task
2) Call subprograms from main program PLC_PRG

PLC_PRG is the default main program of the system. In a sense, it can be understood as the battery of a car. In the
production of a car, each part is assembled, which is equivalent to the writing of subprograms. When the car is assembled,
it is necessary to check whether the car is usable. If you want to start the car, you must start the engine, lights and other
parts through the battery which is equivalent to the entry point for starting the car. By calling the program in this way, the
program becomes more operable and flexible. You can add judgment statements and use nesting in the program.

PLC_PRG is a special POU that runs by default with a coasting mode. This POU is called every control cycle by default
without any additional task configuration. The configuration of the POU can be found in the task configuration. It can be
used to call other subprograms and add necessary condition selection at the time of the call, or nest subprograms to make
program calling more flexible. To implement the call relationship in Figure 6-17, write the following code in the main
program PLC _PRG.

POU 1 POU 3
PLC PRG POU_30:
POU_40);
Main program | POU_10);
POU_2();
POU 2

Figure 6-17 POU calling sequence

As shown in the Figure 6-17, the main program is PLC_PRG, which uses structured text programming language, and the
program content is POU_1(); POU_2();.

The main function of the above programs is to call and execute POU_1 and POU_2 subprograms respectively. And
POU_1 calls POU_3 and POU_4 respectively. The AX7x programmable controller actually executes the programs in the
following order:

a) AX7x programmable controller program executes POU_1 first.

b) Since POU_3 and POU_4 are called sequentially in POU_1, POU_3 is executed first.
c) Execute POU_4 to complete POU_1.

d) Finally execute POU_2 to complete a full task cycle.

Repeating the above steps a) to d) is the internal execution sequence of the AX7x series programmable controller.

-01-

AX series programmable controller software manual EtherCAT Bus Motion Control

7 EtherCAT Bus Motion Control

7.1 EtherCAT operation principle
7.1.1 Protocol introduction

EtherCAT overcomes the inherent limitations of other Ethernet solutions. : On the one hand the Ethernet packet is no
longer received then interpreted and process data then copied at every device, but the EtherCAT slave devices read the
data addressed to them while the frame passes through the node. Similarly, input data is inserted while the telegram
passes through. In the whole process, the frames are only delayed by a few nanoseconds.

The frame send by the master is passed through to the next device until it reaches the end of the segment (or branch).
The last device detects an open port and therefore sends the frame back to the master. On the other hand, an EtherCAT
frame comprises the data of many devices both in sending and receiving direction within one Ethernet frame. The usable
data rate increases to over 90 %. The full-duplex features of 100 Mb/s TX are fully utilized, so that effective data rates of >
100 Mb/s (> 90 % of 2 x 100 Mb/s) can be achieved.

The EtherCAT master uses standard Ethernet Medium Access Controllers (MACs) without extra communication
processors. Thus an EtherCAT master can be implemented on any equipment controller that provides an Ethernet
interface, independently of the operating system or application environment. The EtherCAT slave uses an EtherCAT Slave
Controller (ESC) for processing the data on-the-fly. Thus the performance of the network is not determined by the
microcontroller performance of the slave but is handled complete in hardware. A process data interface (PDI) to the
slave's application offers a Dual-Port-RAM (DPRAM) for data exchange.

Precise synchronization is particularly important in a wide range of distribution processes that require simultaneous
actions, such as when several servo axes are performing simultaneous tasks. Precise calibration of distributed clocks is
the most effective solution for synchronization. In the communication system, the stepwise calibration clock has the
tolerance of error delay to a certain extent, compared with the fully synchronous communication.

7.1.2 Work counter WKC

The end of each EtherCAT message has a 16-bit working counter, WKC. WKC is a working counter used to record the
number of reads and writes to the EtherCAT slave device. The EtherCAT slave controller calculates WKC in the hardware.
The master receives the return data and checks the WKC in the sub-message. If WKC is not equal to the expected value,
the sub-message has not been processed correctly. When a sub-message passes through a certain slave node, WKC will
be increased by 1 if it is a single read or write operation. If it is a read and write operation, WKC will be increased by 1
upon read success, by 2 upon write success and by 3 upon complete. WKC is the accumulation of the processing results
of each slave. The description of WKC increment is shown in Table 7-1.

Table 7-1 WKC increment

Command Data type Increment
Read failed -
Read
Read succeeded +1
) Write failed =
Write .
Write succeeded +1
Failed -
. Read succeeded +1
Read/write -
Write succeeded +2
Read and write succeeded +3

-02-

AX series programmable controller software manual

EtherCAT Bus Motion Control

7.1.3 Addressing mode

EtherCAT communication is realized by the master sending EtherCAT data frames to read and write the internal storage
area of the slave device. EtherCAT messages use multiple addressing modes to operate the ESC internal storage area for
multiple communication services. The addressing mode of EtherCAT is shown in Figure 7-1. An EtherCAT network
segment is equivalent to an Ethernet device. The master first uses the MAC address of the Ethernet data frame header to
address the network segment, and then uses the 32-bit address in the EtherCAT sub-message header to address the
device in the segment. There are two ways to achieve in-segment addressing: device addressing and logical addressing.
Device addressing performs read and write operations for a certain slave node. Logical addressing is oriented to process

data and can be multicast. The same sub-message can read and write multiple slave devices.

Ethernet data frame header

address

‘ Device addressing ‘

Sequence addressing ‘ ‘ Setting addressing ‘

]

Addressing by the
physical site where
the device connected

7

Addressing by site
number

I

Process data
addressing

EtherCAT sub-message header
address area

Figure 7-1 Addressing mode of EtherCAT

7.1.3.1 Segment addressing

Depending on how the EtherCAT master and its segment are connected, the segment can be addressed in two ways.

<> Direct connection mode

An EtherCAT segment is directly connected to the standard Ethernet port of the master device, as shown in Figure 7-2. In

this case, the master uses the broadcast MAC address and the EtherCAT data frame is shown in Figure 7-3.

EtherCAT segment equals one Ethernet device

I I
I I
I I
I I
| |
I I
Master 3 Slave Slave Slave Slave Slave Slave 3
device | | device device device device device device |
| |
[I |1 | |1 |1 | i
I I
L, |
Figure 7-2 EtherCAT segment in direct connection mode
6 bytes 6 bytes 2 bytes 2 bytes 44-1498 bytes 4 bytes
N A A N A A
Destination address: Source address: Frame type EtherCAT message
FF FF FF FF FF FF FF FF FF FF FF FF (0x88A4) header EtherCAT data pCs

Figure 7-3 Addressing mode of EtherCAT in direct connection mode

-03-

AX series programmable controller software manual

EtherCAT Bus Motion Control

< Open mode

EtherCAT segment is connected to a standard Ethernet switch, as shown in Figure 7-4. In this case, a segment needs a
MAC address and the address in the EtherCAT data frame sent by the master is the MAC address of the segment it
controls, as shown in Figure 7-5. The first slave device in the EtherCAT segment has an ISO/IEC 8802.3 MAC address,
which represents the entire segment. This slave is called a segment address slave, which can exchange the destination
address area and source address area in the Ethernet. If EtherCAT data frame is sent over UDP, the device will also
exchange the source and destination IP addresses and the source and destination UDP port numbers, making the
response frame fully complied with the UDP/IP protocol.

I
I
i EtherCAT segment equals one Ethernet device i
! Slave !
i device |
I .
Master ! with Slave Slave Slave Slave Slave i
device . i segment device device device device device !
Switch | address |
oooooood } 1
| [[1 |1 |1 |1 |1] |
I I
I I
Common Ether T 1
. | EtherCAT segment equals one Ethernet device |
device ! Slave i
i device !
I .
[! with Slave Slave Slave Slave Slave i
i segment device device device device device !
i address |
Master ! !
device } 1 |1 |1 |1 |1 | |
I I
I I
Figure 7-4 EtherCAT segment in open mode
6 bytes 6 bytes 2 bytes 2 bytes 44-1498 bytes 4 bytes
A A A
Destination address: Source address: Frame type EtherCAT
Segment MAC address Master MAC address (0x88A4) message head EtherCAT data pcs

Figure 7-5 Addressing mode of EtherCAT in open mode

7.1.3.2 Device addressing

During device addressing, the 32-bit address in the EtherCAT sub-message header is divided into a 16-bit slave device

address and a 16-bit slave device internal physical storage space address, as shown in Figure 7-6. The 16-bit slave

device address can address 65535 slave devices, and each device can have up to 64 local address spaces.

Only one unique slave device is addressed per message in the device addressing mode, but there are two different

mechanisms for addressing devices.

8Bit 8Bit 32Bit 11Bit 2 1 1 1 16Bit
Command Index Address area Length R C R M Statue bit
16Bit 16Bit
Sequence Slave sequence Memory offset Sequence
addressing address address addressing
I Setting Slave setting Memory offset Setting
addressing address address (addressing
Logic Logic address Logic
addressing addressing

Figure 7-6 EtherCAT device addressing structure

-94-

AX series programmable controller software manual EtherCAT Bus Motion Control

< Sequential addressing

For sequential addressing, the address of a slave is determined by its connection location within the segment, with a
negative number indicating the location of each slave within the segment as determined by the wiring sequence. When
the sequential addressing sub-message passes through each slave device, its sequential address is increased by 1.
When the slave receives a message, the message with a sequential address of 0 is the message addressed to it. This
mechanism is also known as "automatic incremental addressing" because it updates the device address as the message
passes through.

In Figure 7-7, there are three slave devices in the segment that are sequentially addressed as 0, -1, -2, and so on. When
the master uses sequential addressing to access the slave, the address change of the sub-message is shown in Figure
7.8. The master station sends 3 sub-messages to address 3 slave nodes, where the addresses are 0, -1 and -2
respectively, and the data frame is 1 as shown in the figure. When the data frame reaches the slave @, the slave @
checks that the address in sub-message 1 is 0, thus knowing that sub-message 1 is the message addressed to itself. After
the data frame passes through the slave @), all sequential addresses are increased by 1, called 1, 0 and -1, as shown in
the data frame 2 in Figure 7-8. When the data frame reaches the slave @), the slave @ finds that the address in
sub-message 2 is 0, which is its own message. Similarly, subsequent slave nodes are addressed in this way. As shown in
Figure 7.7, in actual engineering applications, sequential addressing is mainly used in the startup phase, and the master
node configures a site address for each slave node. After that, the slave node can be addressed using a site address that
is independent of their physical location. The sequential addressing mechanism can be used to automatically address the
slave node, as shown in Figure 7-8.

0x0000(0) OXFFFF(-1) OXFFFE(-2)

=
Ul |Ule
/|0 33 = =
0|0 00 eje eJe
D] 0O

() [ow
Figure 7-7 Sequentially addressed slave address
Sub-message 1 Sub-message 2 Sub-message 3
Data frame 1 0 OxFFFF OXFFFE |
1) (-2)

Sequence address from which the master station sends a message, i.e. the address to reach the slave station (.

OXFFFF

Data frame 2 1 e 0 (1)

Sequential address of the message after being processed by the slave @), i.e. the address that reaches the slave @

Data frame 3 2 1 0

Sequential address of the message after being processed by the slave @), i.e. the address that reaches the slave @

Figure 7-8 Change of sub-message address during sequential addressing

< Setting addressing

When setting addressing, the slave node address is independent of its sequential order within the network segment. As
shown in Figure 7-9, the address can be configured by the master to the slave in the data link start-up phase, or loaded by
the configuration data of the slave in the power-on initialization phase, and then read by the master in the link start-up
phase using the sequential addressing mode to set the address of each slave node. Its message structure is shown in
Figure 7-10.

-05-

AX series programmable controller software manual EtherCAT Bus Motion Control

1000 1234 5678
IPC . |:| '_l '_l
E,
Ul U g
0|0 83 = =
0|0 00 00 00
0| OO
Q DVI o
@ ®

Figure 7-9 Slave address in setting addressing mode

Sub-message 1 Sub-message 2 Sub-message 3

Data
frame 1 | o 1000 | e eee 1234 | eee e 5678 | e eee

Figure 7-10 Message structure in setting addressing mode
< Logic addressing

For logical addressing, the slave address is not defined separately, but using a section of the 4GB logical address space
in the addressing section. The 32-bit address area within the message is used as the overall data logical address to
complete the logical addressing of the device. The logical addressing mode is implemented by the Fieldbus Memory
Management Unit (FMMU). The FMMU function is located inside each ESC and maps the local physical storage address
of the slave to the logical address of the segment. The schematic diagram is shown in Figure 7-11.

IPC . s
0 o b
L T
o = I,
23 | | - | | |
v VvVYY YYVYVYVYY v Vv
Sub Sub Sub
Ethernet header| header 1 PLC data header 2 NC data [ety Data n ‘ CRC ‘
. . ’ .
v v v
A A T
Datan
PLC data |«
NC data |«
Sub-message 1 Sub-message 2 Sub-message n

Figure 7-11 FMMU operating Principle

When receiving an EtherCAT sub-message of data logic addressing, the slave device will check for an FMMU unit
address match. If the match exists, the slave device will insert the input type data into the corresponding position in the

EtherCAT sub-message data area, and extracts the output type data from the corresponding position in the EtherCAT
sub-message data area.

-06-

AX series programmable controller software manual EtherCAT Bus Motion Control

7.1.4 Distributed clocks
7.1.4.1 Concepts

In applications with spatially distributed processes requiring simultaneous actions, exact synchronization is particularly
important. For example, this is the case for applications in which multiple servo axes execute coordinated movements.
With this mechanism, the slave device clocks can be precisely adjusted to this reference clock. The first slave connected
to the master with distributed clocking functions acts as a reference clock to synchronize the slave clocks of the other
devices and the master. To achieve precise clock synchronization control, it is necessary to measure and calculate the
data transmission delay and local clock offset, and to compensate for the drift of the local clock. The following 6 concepts
are involved in the synchronization of the clock.

< System time

The system time is the system timing used by the distributed clock. It starts at 0:00 on January 1, 2001, and is expressed
in a 64-bit binary variable in nanoseconds (ns) and can be timed for up to 500 years. It can also be expressed as a 32-bit
binary variable with a maximum of 4.2s, which is usually used for communication and time stamping.

< Reference clock and slave clock

The EtherCAT protocol defines the first slave connected to the master with distributed clocking functions acts as a
reference clock, and the clocks of other slave nodes are called slave clocks. The reference clock is used to synchronize
the slave clocks and the master clock of other slave devices. The reference clock provides the EtherCAT system time.

< Master clock

The EtherCAT master station also has a timing function, which is called the master clock. The master clock can be
synchronized as a slave clock in a distributed clock system. In the initialization phase, the master can send the master
clock to the reference clock slaves in system time format, which enables the distribution clocks to be timed using system
time.

< Local clock, initial offset and clock drift

Each DC slave has a local clock, which runs independently and is timed using the local clock signal. When the system
starts, there is a certain difference between the local clock and the reference clock of each slave, which is called the initial
clock offset. During operation, due to the fact that the reference clock and the DC slave clock use their own clock sources,
their timing cycles drift to a certain extent, which will lead to the clock running out of sync and the local clock drifting.
Therefore, the initial clock offset and clock drift must be compensated.

< Local system time

The local clock of each DC slave generates a local system time after compensation and synchronization. The distributed
clock synchronization mechanism is to keep the local system time of each slave consistent. The reference clock is also
the local system clock of the corresponding slave.

<~ Transmission delay

There will be a certain delay when data frames are transmitted between slaves, which includes device internal and
physical connection delays. Therefore, when synchronizing slave clocks, the transmission delay between the reference
clock and multiple slave clocks should be considered.

7.1.4.2 Clock synchronization process
Clock synchronization consists of the following three steps:
a) Transmission delay measurement

When the distributed clock is initialized, the master will initialize the transmission delay for slave nodes in all directions,
calculate the deviation value between the slave clocks and the reference clock, and write it into the slave clock.

b) Reference clock offset compensation (system time)

-97-

AX series programmable controller software manual EtherCAT Bus Motion Control

The local clock of each slave will be compared with the system time, and then different comparison results will be written
into different slaves, so that all slaves will get the absolute system time.

c¢) Reference clock drift compensation

Clock drift compensation and local time are used to periodically compensate for local clock errors and fine-tuning. The
following figure illustrates two application cases of compensation calculation. Figure 7-12 shows a case where the system

time is less than the slave local clock. Figure 7-13 shows a case where the system time is greater than the slave local
clock.

< System time < local time

tsyslem tIoca\l

A A
Drift compensation Rx
including system Transmission
time Transmission delay time
delay .,
......... Local Offset .
TX e lock lcompensation
........... i Drift
System Target: Slave clock compensation
time copies system time
» X
Reference clock Slave clock
Figure 7-12 Clock synchronization: system time < local time
< System time > local time
tsys,tem tlocal
A A
Target: Slave clock
Tx copies system time Drift
System ':_T__________________' T 777 7 A | compensation
time R
Offset
compensation
L Rx
Drift compensation®* .,
including system *+. . Transmissiory Transmission
time *- delay delay
T compensation
Local
clock
P» X
Reference clock Slave clock

Figure 7-13 Clock synchronization: system time > local time

With EtherCAT, data exchange is completely hardware-based. Due to the logic ring structure of communication (with the
help of the physical layer of full-duplex fast Ethernet), the master clock can simply and accurately determine the delay
offset of slave clock propagation, and vice versa. The distributed clocks are adjusted based on this value, which indicates

that a very precise deterministic synchronization error time base (less than 1 microsecond) can be used across the
network. Its structure is shown in Figure 7-14.

-08-

AX series programmable controller software manual EtherCAT Bus Motion Control

(TS [%35 s TS [g?s Q?s
LY LN | LU | L | | 1

Figure 7-14 Clock synchronization principle

For example, there is a difference of 300 nodes between the two devices, and the cable length is 120 meters. Use an
oscilloscope to capture the communication signal, and the result is shown in Figure 7-15.

-

U

Node 1 interrupt

Synchronization time:15ns

Jitter:+20ns

Node 300 interrupt

O 2.00v - Ch2° 2.00V (H20.0ns)A Chl \ 1.40V

- 1+¥.0.00000 s

Figure 7-15 Performance test of clock synchronization

This function is very important for motion control. In such applications, velocity is typically derived from the measured
position. Even very small jitter in the position measurement timing can translate to larger inaccuracies in the calculated
velocity, especially relative to short cycle times. In EtherCAT, the introduction of time-stamped data types as a logical
extension allows high-resolution system times to be added to the measured value, which is made possible by the huge
bandwidth that Ethernet provides.

-99-

AX series programmable controller software manual EtherCAT Bus Motion Control

7.1.5 EtherCAT cable redundancy

Increasing demands in terms of system availability are catered for with optional cable redundancy that enables devices to
be exchanged without having to shut down the network. Adding redundancy is very inexpensive: the only additional
hardware is another standard Ethernet port (no special card or interface) in the master device and the single cable that
turns the line topology into the ring. Switchover in case of device or cable failure only takes one cycle, so even demanding
motion control applications survive a cable failure without problems.

EtherCAT also supports redundant masters with hot standby functionality. Since the EtherCAT Slave Controllers
immediately return the frame automatically if an interruption is encountered, failure of a device does not necessarily lead
to the complete network being shut down. For example, the standard EtherCAT topology is shown in Figure 7-16 a). If
there is a network interruption between Slave2 and SlaveN-2 in this topology (the red part in the figure), all slave
communication after Slave N-2 is interrupted accordingly. This is also the disadvantage of the standard topology.

EthesCAT Master EthetCAT Master
AX Unit TX Une RX Unif TX Unit
RX ™

IF

o D
Cf/ (:f)
Stave | Save 2
BX T R TX

Slave 1 Slave 2
RX T e RX I TX
i

T RX e TX "X

™ RX e TX [JRX

a) Standard EtherCAT topology b) EtherCAT redundant topology
Figure 7-16 EtherCAT redundancy

Figure 7-16 b) shows the topology structure of the EtherCAT redundancy mode. Only two standard network ports are
needed for the master to realize the topology. With these two ports, all slave nodes can form a loop. Even if the network is
interrupted while in use, such as the disconnected red part in Figure 7-16, the master node will detect the error
immediately and automatically divide the communication into two channels, and all the slave nodes can continue to
communicate to ensure the stable operation of the system.

7.2 EtherCAT communication mode

In actual automation control systems, there are usually two forms of data exchange between applications: time-critical and
time-non-critical. Time critical indicates that a specific action must be completed within a certain time window. If the
communication cannot be completed within the required time window, it may cause control failure. Time-critical data is
usually sent periodically, which is called periodic process data communication. Non-time-critical data can be sent out of
cycle, and non-periodical mailbox data communication is used in EtherCAT.

7.2.1 Periodic process data communication

The master node can use logical read, write or read and write commands to control multiple slaves at the same time. In
the periodic data communication mode, the master and the slave have multiple synchronous operation modes.

1) Slave device synchronization mode
< Free running

In free-run mode, the local control cycle is generated by a local timer interrupt. The cycle time can be set by the master,
which is an optional feature of the slave. The local cycle in free-running mode is shown in Figure 7-17. In the figure, T1 is
the time for the local microcontroller to copy data from the EtherCAT slave controller and calculate the output data; T2 is
the output hardware delay, and T3 is the input latch offset time. These parameters reflect the time response performance
of the slave.

-100-

AX series programmable controller software manual EtherCAT Bus Motion Control

Local timer event Local timer event
Cycle time
Min. cycle time
<
T1 T2 T3
Copy output | | Obtain and copy input
Output valid Input lock

Figure 7-17 Local cycle in free-running mode

<~ Synchronization to data or output events

The local cycle is triggered on the occurrence of a data input or output event, as shown in Figure 7-18. The master can
write the sending cycle of the process data frame into the slave. The slave will check if this cycle time is supported or if the
cycle time is optimized locally. The slave can choose to support this feature. It is usually synchronized to the data output
event. If the slave only has input data, the data is synchronized to the input event.

Data input/output event Data input/output event
Data Data
frame frame
Cycle time
Min. cycle time
T1 T2 T3
Copy output | Obtain and copy input
Output valid Input lock

Figure 7-18 Local cycle of synchronization to data input or output events
< Synchronization to distributed clock synchronization event

The local cycle is triggered by the SYNC event, as shown in Figure 7-19. The master must complete the transmission of
the data frame before the SYNC event. For this reason, the master clock must also be synchronized with the reference

clock.

SYNC event SYNC event
frame frame
Cycle time
| -— —
Min. cycle time
<

T1 T2 T3

Copy output | | Obtain and copy input

Output valid Input lock
Figure 7-19 Local cycle of synchronization to SYNC event

-101-

AX series programmable controller software manual EtherCAT Bus Motion Control

To further optimize slave station synchronization performance, the master should copy the output information from the
received process data frame when a data transmission and reception event occurs. After the SYNC signal arrives,
continue the local operation. As shown in Figure 7-20, the data frame must arrive T1 time earlier than the SYNC signal.
The slave has completed data exchange and control calculations before the SYNC event and can perform the output
operation immediately after receiving the SYNC signal, further improving synchronization performance.

Data input/output event Data input/output event
SYNC event SYNC event
Cycle time
frame

Data 4

frame
Min. cycle time

Tl T2 T3

Output valid Input lock

Figure 7-20 Local cycle of the optimized synchronization to SYNC event
2) Master device synchronization mode
There are two synchronization modes for the master.
< Cyclic mode

In cyclic mode, the master periodically sends process data frames. The master’s cycle is usually controlled by a local timer.
The slave node can run in free-running mode or in synchronization to received data event mode. For the slave in
synchronization mode, the master should check that the cycle time of the corresponding process data frame is greater
than the minimum cycle time supported by the slave.

The master can send a variety of periodic process data frames at different cycle times to get the most optimized
bandwidth. For example, a shorter cycle is used to send motion control data and a longer cycle is used to send I/O data.

< DC mode

The master runs in DC mode similarly to cyclic mode, except that the local cycle of the master should be synchronized
with the reference clock. The master's local timer should be adjusted based on the ARMW message that publishes the
reference clock. After the ARMW message used to dynamically compensate clock drift is returned to the master, the
master clock can be adjusted based on the read back reference clock time to be roughly synchronized with the reference
clock time.

In DC mode, all DC-enabled slaves should be synchronized to the DC system time. The master should also synchronize
the other communication cycles with the DC reference clock time. Figure 7-21 shows how the local cycle is synchronized
with the DC reference clock.

-102-

AX series programmable controller software manual

EtherCAT Bus Motion Control

Local timer event

Application

Local timer event

Application

Master additional
offset

D U
frame

Pre-calculated fixed offset

|‘ Master frame

*‘
Data

frame

Transmission

SYNC

DC Base

Master

SYNC

Figure 7-21 Master DC mode

The master local run is started by a local timer. The local timer should have an advance over the DC reference clock

timing, which is the sum of the following times.

<>

<&
<&
%

Control program execution time
Data frame transmission time

Data frame transmission delay (D)

7.2.2 Non-periodic mailbox data communication

Additional offset (U) (Related to the jitter value of the delay time of each slave and the jitter value of the control
program execution time, used for the adjustment of the master cycle)

The non-periodical data communication in the EtherCAT protocol is called mailbox data communication, which can be
carried out in both directions, i.e. from the master to the slave and from the slave to the master. It supports full duplex,
two-way independent communication and multi-user protocols. The slave-to-slave communication is managed by the

master as a router. The mailbox communication data header includes an address field that enables the master to resend

mailbox data. Mailbox data communication is a standard way of realizing parameter exchange, and is used if periodic

process data communication or other non-periodic services need to be configured.

The mailbox data message structure is shown in Figure 7-22. Usually the mailbox communication value corresponds to a
slave station, so the device addressing mode is used in the message. The data elements in its data header are listed in

Table 7-2.

Sub header Data

WKC

Mailbox protocol data

Mailbox data
header

Command Command-related data

| 16Bit 16 Bit 6 Bit 2 Bit

Length Address Channel Priori
9" he 3 ag "o

Counter
44

Figure 7-22 Mailbox data unit structure

-103-

AX series programmable controller software manual EtherCAT Bus Motion Control

Table 7-2 Mailbox data header

Data element Bit Description

Length 16 bits Length of the followed mailbox service data

Slave address of data source for master-to-slave
communication

Address 16 bits L
Slave address of data destination for master-to-slave
communication

Channel 6 bits Reserved

Priority 2 hits Reserved

Mailbox type, i.e. type of subsequent protocol.

0: Mailbox communication error

2: EoE (Ethernet over EtherCAT)

Type 4 hits 3: CoE (CANopen over EtherCAT)

4: FoE (File Access over EtherCAT)

5: SoE (Sercos over EtherCAT)

15: VoE (Vendor Specific Profile over EtherCAT)

Sequence number used for repeated detection, increasing by 1
Counter (Ctr) 4 bits for each new mailbox service (Only 1 to 7 is used for

compatibility with older versions)

<> Master-to-slave communication — write mailbox command

The master sends the write data area command to send mailbox data to the slave. The master will check the work counter
WKC in the slave’s answer message of mailbox command. If the work counter is 1, the write command is successful.
Conversely, if the work counter is not increased, which is usually because the slave did not finish reading the previous
command, or did not respond within a limited time, the master must resend the write mailbox data command.

< Master-to-slave communication — read mailbox command

To be sent from the slave to the master, the data must first be written to the input mailbox cache and then read by the
master. If there is valid data waiting to be sent from the slave ESC input mailbox data area, the master will send the
appropriate read command to read the slave data as soon as possible. There are two ways for the master to determine
whether the slave has filled the mailbox data into the input data area. One is to use FMMU to periodically read a certain
flag bit. Logical addressing can be used to read the flags of multiple slave s, but the disadvantage is that each slave
requires an FMMU unit. The other way is to input a simple rotation training ESC into the input area of the mailbox. An
increase of 1 in the work counter of the read command indicates that the slave has populated the input data area with new
data.

7.3 EtherCAT state machine

EtherCAT State Machine (ESM) coordinates the state of the master and slave applications at initialization and runtime.
The EtherCAT device must support four states and an optional state.

Init: initialization, abbreviated as |I.
Pre-Operational: abbreviated as P.

&
&
< Safe-Operational: abbreviated as S.
<~ Operational: abbreviated as O.

&

Boot-Strap: (Optional) abbreviated as B.

The conversion relationship between the above states is shown in Figure 7-23. When the state is converted from the
initialization state to the operational state, the conversion must be done in the order of "Init > Pre-Operational >
Safe-Operational > Operational > Boot-Strap". The leapfrog conversion is only available when returning from the
Operational state. The Boot-Strap state is optional and is only allowed to convert to and from the Init state. All state

-104-

AX series programmable controller software manual EtherCAT Bus Motion Control

changes are initiated by the master node, which sends a state control command to the slave to request a new state, and
the slave responds to this command by performing the requested state conversion and writing the result to the slave state
indicator variable. If the requested state conversion fails, the slave will give an error flag. Table 7-3 shows the summary of
state conversions.

| Initialize
A ap) | (PyA A | A
v sn|®y ©)
| Pre-Operational | | BootStrap |
A ! Y
(PS) |(SP
(On | (opP) v(:
| Safe-Operational
A
(SO) (0S)
Y
Operational |

Figure 7-23 EtherCAT state conversion
< Init

The initialization state defines the initial communication relationship between the master and the slave at the application
layer. At this time, the master and the slave cannot communicate directly at the application layer, and the master uses the
initialization state to initialize some configuration registers of the ESC. If the master supports mailbox communication,
configure the mailbox communication parameters.

< Pre-Operational

In Pre-Operational state, mailbox communication is activated. The master and slave can use mailbox communication to
exchange application-related initialization operations and parameters. Process data communication is not allowed in this
state.

< Safe-Operational

In Safe-Operational state, the slave application reads the input data, but does not generate an output signal. The device
has no output and is in a "safe state". In this case, mailbox communication is still available.

<~ Operational

In Operational state, the slave application reads data, the master application sends out output data, and the slave device
generates an output signal. In this case, mailbox communication is still available.

<~ Boot-Strap

The function of the boot strap state is to download the device firmware program. The master can download a new
firmware program to the slave using FOE protocol mailbox communication.

Table 7-3 State conversion of EtherCAT state machine

State and state o
. Description
conversion
Init There is no communication at the application layer, and the master can
ni
only read and write ESC registers.
The master configures the slave site address register.
. Configure mailbox channel parameters if mailbox communication is
Init to Pre-OP
(IP) supported.
Configure DC related registers if distributed clocks are supported.
The master writes state control register to request "Pre-Op" state.
Pre-Operational Mailbox data communication at application layer

-105-

AX series programmable controller software manual EtherCAT Bus Motion Control

State and state .
) Description
conversion

The master uses mailboxes to initialize process data mapping.

The master configures the SM channel used for data communication.

Pre-Op to Safe-Op (PS) i
The master configures FMMU.

The master writes state control register to request "Safe-Op" state.

. The master sends valid output data.
Safe-Operational) .
The master writes state control register to request "Op" state.

. All inputs and outputs are valid.
Operational

Mailbox communication is still available.

7.4 EtherCAT servo drive controller application protocol

IEC 61800 standard series is a general specification for variable speed electronic power drive systems. IEC 61800-7
defines the standard of communication interface between control system and power drive system, including network
communication technology and application profile, as shown in Figure 7-24. EtherCAT, as a network communication
technology, supports the profile CiA 402 in the CANopen protocol and the application layer of the SERCOS protocol,
which are called CoE and SoE respectively.

IEC 61800-7 --Power drive system general interface and application profile

IEC 61800-7-1 - Define interface

General Power Drive System Interface Specification

Appendix A Appendix B Appendix C Appendix D
Profile type 1 mapping Profile type 2 mapping Profile type 3 mapping Profile type 4 mapping
(CiA 402) (CIP Motion) (PROFIdrive) (SERCOS)

IEC 61800-7-200 - Apply profile specification

IEC 61800-7-201
Profile type 1
(CiA 402)

IEC 61800-7-202
Profile type 2
(CIP Motion)

IEC 61800-7-203
Profile type 3
(PROFIdrive)

IEC 61800-7-204
Profile type 4
(SERCOS)

IEC 61800-7-300 - Map profiles to the communication network technology

IEC 61800-7-301
Map profile type 1 to:

e CANopen
e EtherCAT
e ETHERNET
e PowerLink

IEC 61800-7-302
Map profile type 2 to:
® DeviceNet

® ControlNet
e EtherNet/IP

IEC 61800-7-303
Map profile type 3 to:

® PROFIBUS
® PROFINET

IEC 61800-7-304
Map profile type 4 to:
e SERCOS [+1I

e SERCOSIII
e EtherCAT

Figure 7-24 IEC 61800-7 architecture

7.4.1 EtherCAT-based CAN application protocol (CoE)

CANopen device and application profiles are available for a wide range of device classes and applications, ranging from
1/0 components, drives, encoders, proportional valves and hydraulic controllers to application profiles for plastic or textile
machinery, for example. EtherCAT can provide the same communication mechanisms as the familiar CANopen
mechanisms: object dictionary, PDO (process data objects) and SDO (service data objects) — even the network
management is comparable. EtherCAT can thus be implemented with minimum effort on devices equipped with CANopen.
Large parts of the CANopen firmware can be reused. Objects can optionally be expanded in order to account for the larger
bandwidth offered by EtherCAT.

-106-

AX series programmable controller software manual EtherCAT Bus Motion Control

The EtherCAT protocol supports the CANopen protocol at the application level and is supplemented by the following main
features:

< Network initialization by accessing the CANopen object dictionary and objects using mailbox communication

< Network management by using CANopen application objects and optional time-driven PDO messages.

< Mapping process data, cyclic transmission command data and state data by object dictionary.

Figure 7-25 shows the CoE device structure whose communication modes mainly include periodic process data

communication and non-periodic data communication. The following section will introduce the differences between both
modes in practical applications.

EtherCAT device

EtherCAT application

v v

Object dictionary Process data
SDO PDO mapping
o A
CoE CoE
Mailbox Process data

EtherCAT slave device

Ethernet physical layer

\ 4

Figure 7-25 CoE device structure

7.4.1.1 CoE object dictionary

The CoE protocol fully complies with the CANopen protocol and has the same object dictionary definition as shown in
Table 7-4.

Table 7-4 CoE object dictionary definition

Index number range Description

0x0000—-0x0FFF Data type description
Communication objects include:

0x1000-0x1FFF device type, identifier, PDO mapping, CANopen-compatible data object
for CANopen. EtherCAT extension data object is reserved in EtherCAT.

0x2000—-0x5FFF Manufacturer definition object

0x6000—-0x9FFF Profile definition data object

0xAO000-OxFFFF Reserved

Table 7-5 lists the CoE communication data objects, which extend the relevant communication objects 0x1C00—-0x1C4F
for EtherCAT communication to set the type of storage synchronization manager, communication parameters and PDO
data allocation.

-107-

AX series programmable controller software manual EtherCAT Bus Motion Control

Table 7-5 CoE communication data object

Index Description
0x1000 Device type
0x1001 Error register
0x1008 Vendor device name
0x1009 Manufacturer hardware version
0x100A Manufacturer software version
0x1018 Device identifier

0x1600-0x17FF RxPDO mapping

0x1A00-0x1BFF TxPDO mapping

0x1C00 Sync manager communication type

0x0x1C10-0x1C2F Process data communication sync manager PDO assignment

0x0x1C30-0x1C4F Synchronization management parameters

7.4.1.2 CoE periodic process data communication (PDO)

In periodic data communication, the process data can contain multiple PDO mapping data objects. The data objects
0x1C10 to Ox1C2F used by the CoE protocol define the corresponding PDO mapping channels. Table 7-6 shows the
specific structure of the communication data in the EtherCAT protocol.

Table 7-6 CoE communication data object

Index Object type Description Type
0x1C10 Array SMO PDO assignment Unsigned integer 16-bit
0x1C11 Array SM1 PDO assignment Unsigned integer 16-bit
0x1C12 Array SM2 PDO assignment Unsigned integer 16-bit
0x1C13 Array SM3 PDO assignment Unsigned integer 16-bit
O0x1C2F Array SM31 PDO assignment Unsigned integer 16-bit

The following uses the allocation for SM2 PDO (0x1C12) as an example and Table 7-7 lists its value. If two data are
mapped in PDOO, the first communication variable will be the control word with the corresponding mapped index and
sub-index address 0x6040:00, and the second communication variable is the target position value with the corresponding
mapped index and sub-index address 0x607A:00.

Table 7-7 Example of SM2 channel PDO assign object data 0x1C12

0X1C12 Numeric PDO data object mapping
Sub-index value Sub-index | Numeric value | Bytes Description
Number of PDO
0 3 1 . .
mapping objects
0 2 1 Number of data mapping
PDOO data objects
1
0x1600 0x6040: 00 2 Control word
0x607A: 00 4 Target position

-108-

AX series programmable controller software manual

EtherCAT Bus Motion Control

0X1C12 Numeric PDO data object mapping
Sub-index value Sub-index | Numeric value | Bytes Description
0) 1 Number of data mapping
PDO1 data objects
! 0x1601 1 0x6071: 00 2 Target torque
2 0x6087: 00 4 Target ramp
0) 1 Number of data mapping
PDO2 data objects
! 0x1602 1 0x6073: 00 2 Max. current
2 0x6075: 00 4 Motor rated current

There are several PDO mapping modes:
(1) Simple devices do not require mapping protocols

< Use simple process data

< Read in the EEPROM of the slave
(2) Readable PDO mapping

< Fix process data mapping

< Read with SDO communication
(3) Selectable PDO mapping

<~ Multiple fixed PDO groups are selected by object 0x1C1X

< Read through SDO communication
(4) Variable PDO mapping
< Configure through CoE communication

7.4.1.3 CoE non-periodic process data communication (SDO)

The EtherCAT master enables non-periodic data communication via reading and writing mailbox data SM channels. The
CoE protocol mailbox data structure is shown in Figure 7-26.

8 bytes 2 bytes 1478 bytes at most

Mailbox data header

type=3(CoE) Command-related data

CoE command

9 bit 3 bit 4 bit

Number Reserved

Type

Figure 7-26 CoE data header

-109-

AX series programmable controller software manual EtherCAT Bus Motion Control

The numbered part in Figure 7-26 is explained in detail in Table 7-8.

Table 7-8 CoE command definition

CoE command field Description

No. Number when PDO is sent

Message type:
0: Reserved
1: Emergency information
2: SDO request
3: SDO response

Type 4: TxPDO
5: RxPDO
6: Remote TxPDO send request
7: Remote RxPDO send request
8: SDO information

9-15: Reserved

< SDO service

CoE communication service types 2 and 3 are SDO communication services, and the SDO data structure is shown in
Figure 7-27.

6 bytes 2 bytes 1478 bytes at most
Mailbox data header CoE
type=3(CoE) command Command-related data
Type=2or 3 f |
| 8 bit 16 bit 8 bit 32 bit 1-1470 bit |
SDO control Index Sub-index data Optional data

Standard CANopen data frame

Figure 7-27 SDO data frame format

SDO usually has three transmission modes. Table 7-9 shows the specific content of the SDO data frame. Its structure is
shown in Figure 7-28:

Fast transmission service: As with the standard CANopen protocol, only 8 bytes are used and up to 4 bytes of valid data
can be transmitted.

Regular transmission service: More than 8 bytes can be used to transmit more than 4 bytes of valid data. The maximum
valid data that can be transmitted depends on the storage area capacity managed by the mailbox SM.

Segmented transmission service: Use this service when the capacity of the mailbox is exceeded.

Table 7-9 CoE data frame content

SDO control Standard CANopen SDO service
Index Device object index
Sub-index Sub-index
Data Data in SDO

There are four bytes of optional data that can be added to the data

Data (Optional) frame

-110-

AX series programmable controller software manual

EtherCAT Bus Motion Control

Fast transmission

Regular tranmission

Segmented transmission

Mailbox storage capacity

Mailbox data header

Mailbox data header

Mailbox data header

CoE

CoE

CoE

Data < 4 bytes

4 bytes < Data < Mailbox
size

Data > Mailbox size

Mailbox data header
CoE

Mailbox data header
CoE

Mailbox data header
CoE

Figure 7-28 SDO transmission type

If the data to be transmitted is larger than 4 bytes, the regular transmission service is used. In regular transmission, the 4
data bytes in the fast transmission mode will be used to indicate the full size of the data to be transmitted. The valid data is
transmitted in the extended data section. The maximum size of the valid data is the mailbox capacity minus 16.

7.4.2 Servo drive profile according to IEC 61800-7-204 (SERCOS)

SERCOS is known as a real-time communication interface, especially for motion control applications. The SERCOS
profile for servo drives is included in the international standard IEC61800-7-204. The mapping of this profile to EtherCAT
is defined in section 304 of the standard. The service channel, including access to all drive-internal parameters and
functions, is based on the EtherCAT mailbox. Here too, the focus is on compatibility with the existing protocol (access to
value, attribute, name, units of the IDNs) and expandability with regard to data length limitation. The process data, with
SERCOS in the form of AT and MDT data, are transferred using EtherCAT device protocol mechanisms. The mapping is
similar to the SERCOS mapping. The EtherCAT slave state machine can also be mapped easily to the phases of the
SERCOS protocol.

7.4.2.1 SoE state machine

A comparison between the communication phase of the SERCOS protocol and the EtherCAT state machine is shown in
the Figure 7-29. The SoE state machine is featured as follows:

1) SERCOS protocol communication phase 0 and 1 are overwritten by EtherCAT initialization state.

2) Communication phase 2 corresponds to the operational state, allowing the use of mailbox communication to
implement the service channel and operate IDN parameters.

3) Communication phase 3 corresponds to the safe operational state and starts transmitting periodic data, where only
input data is valid and output data is ignored, implementing clock synchronization.

4) Communication phase 4 corresponds to the operational phase, where all inputs and outputs are valid.

5) Phase switching process commands S-0-0127 (communication phase 3 switchover check) and S-0-0128
(communication phase 4 switchover check) that do not use the SERCOS protocol are replaced by PS and SO
state conversion respectively.

6) The SERCOS protocol only allows switching down from the advanced communication phase to communication
phase 0, whereas EtherCAT allows any state switching down (as shown in a) in Figure 7-29. For example,
switching from the operational state to the safe operational state or from the safe operational state to the
pre-operational state. The SoE should also support this switchover as shown in b) in Figure 7-29. If the slave does
not support this switchover, set the error bit in the EtherCAT AL state register.

-111-

AX series programmable controller software manual EtherCAT Bus Motion Control

IEC 61784
EtherCAT CPF 16
‘ Init ‘ ‘ Communication phase 1 ‘

(P)|| (PI)

Pre-operational ‘ (sh Communicgtion phase

(PS)|| (SP)
(o (S-0-0127)
- 7
(OP) f Safe-operational ‘ Communication phase 3
(with input)

(SO)|| (0s)

H (S-0-0128) H

Operational ‘ ‘ Communication phase 4

a) EtherCAT state machine b) SERCOS state machine

Figure 7-29 SoE state machine
7.4.2.2 IDN inheritance

The SoE protocol inherits the DIN parameter definition of the SERCOS protocol. Each IDN parameter has a unique 16-bit
IDN, which corresponds to a unique data block that holds all information about the parameter. The data block consists of 7
elements, as listed in Table 7-10. The IDN parameters are divided into standard data and product data, and each part
consists of eight parameter groups with different IDN, as listed in Table 7-11.

Table 7-10 IDN data block structure

No. Name
Element 1 IDN
Element 2 Name
Element 3 Attribute
Element 4 Unit
Element 5 Minimum allowable value
Element 6 Maximum allowable value
Element 7 Data value

Table 7-11 IDN number definition

Bit 15 14-12 11-0
Meaning Classification Parameter group Parameter number
0: Standard data (S)
Value 0-7: 8 parameter groups 0000-4095
1: Product data (P)

When using EtherCAT as a communication network, some IDNs in the SERCOS protocol for communication interface
control have been deleted, as listed in Table 7-12. And some IDN has been modified, as listed in

Table 7-13.
Table 7-12 Deleted IDN
IDN IDN description
S-0-0003 Minimum start time of AT sending
S-0-0004 Time between sending and receiving state switching
S-0-0005 Minimum feedback sampling lead time

-112-

AX series programmable controller software manual EtherCAT Bus Motion Control

IDN IDN description
S-0-0009 Start address in the master data message
S-0-0010 Master data message length
S-0-0088 Recovery time required for receiving MSTs after receiving MDTs
S-0-0090 Command processing time
S-0-0127 Communications phase 3 switchover check
S-0-0128 Communications phase 4 switchover check

Table 7-13 Modified IDN

Original o
IDN o Updated description
description

S-0-0006 Start time of AT Time offset in which an application writes AT data to ESC
sending memory after a synchronization signal within the slave.

Communication
S-0-0014) Map slave DL state and AL state code.
interface state

MST error
S-0-0028 Map the slave RX error counter to the loss counter.
technology

Start time of MDT | Time offset of obtaining MDT data from ESC memory after a

S-0-0089) L) o
sending synchronization signal within the slave.

7.4.2.3 SoE periodic process data

Output process data (MDT data content) and input process data (AT data content) are configured by S-0-0015, S-0-0016
and S-0-0024. The process data only includes periodic process data, but not service channel data. The output process
data includes servo control words and command data, while the input process includes status words and feedback data.
S-0-0015 sets the type of periodic process data, as listed in Table 7-14, and the definition of parameters S-0-0016 and
S-0-0024 are listed in Table 7-15. The master writes these three parameters via mailbox communication during the
Pre-Operational phase to configure the contents of the periodic process data.

Table 7-14 Definition of parameter S-0-0015

S-0-0015 Command data Feedback data

0: Standard type O None No feedback data

1: Standard type 1 Torque command S-0-0080 (2 bytes) | No feedback data

2: Standard type 2 Speed command S-0-0036 (4 bytes) | Speed feedback S-0-0053 (4 bytes)

3: Standard type 3 Speed command S-0-0036 (4 bytes)

Position feedback S-0-0051 (4 bytes)

Position command S-0-0047 (4
4: Standard type 4 (Speed feedback S-0-0053 (4 bytes)

bytes)

Position feedback S-0-0051 (4 bytes)
Or speed feedback S-0-0053 (4
bytes) +

Position feedback S-0-0051 (4 bytes)

Position command S-0-0047 (4
5: Standard type 5 bytes)
Speed command S-0-0036 (4 bytes)

6: Standard type 6 Speed command S-0-0036 (4 bytes) | No feedback data

7: Custom S-0-0024 configuration S-0-0016 configuration

-113-

AX series programmable controller software manual EtherCAT Bus Motion Control

Table 7-15 Definition of parameters S-0-0016 and S-0-0016

Data word S-0-0024 definition S-0-0016 definition
Maximum length of output data . .
0 Maximum length of input data (Word)
(Word)
1 Actual length of output data (Word) Actual length of input data (Word)
2 First IDN of command data mapping | First IDN of feedback data mapping

Second IDN of command data | Second IDN of feedback data
mapping mapping

7.4.2.4 SOE non-periodic service channels

The EtherCAT SoE Service Channel (SSC) is done by the EtherCAT mailbox communication function, which is used for
non-periodic data exchange, such as reading and writing IDNs and their elements. The SoE data header format is shown
in Figure 7-30.

6 bytes 4 bytes 1476 bytes at most
Mailbox data header SoE command Command-related
type=5(SoE) data
! 3bit 1 bit 1 bit 3 bit 8 bit 16 bit !
Subsequent Operation
Command data Error | Address element ID IDN

Figure 7-30 SoE data header format

Table 7-16 SoE data command description

Data area Description

Command type:
0x01: Read request
0x02: Read response
0x03: Write request
Command)
0x04: Write response
0x05: bulletin

0x06: Slave information

0x07: Reserved

Subsequent data signal:
Subsequent data | 0x00: No subsequent data frame

0x01: Transmission incomplete, with subsequent data frame

Error signal:
Error 0x00: No error
0x01: Error occurred, 2-byte error code in data area

Address Specific address of the slave device

) Element selection for single element operation, defined by bit, with each bit
Operation element .

) o corresponding to one element.
identification)
Number of elements for addressing constructs

IDN IDN number of the parameter, or the remaining segments during the segment

-114-

AX series programmable controller software manual EtherCAT Bus Motion Control

Data area Description

operation

Commonly used SSC operations include SSC read operations, SSC write operations, and process commands.

<>

SSC read operation: The master initiates the SSC read operation and writes the SSC request to the slave. After
receiving the read operation request, the slave responds with the requested IDN number and data value. The master
can read multiple elements at the same time, so the slave should answer multiple elements. If the slave only
supports single element operation, it should respond with the first element requested.

SSC write operation: This operation is used to download data from the master to the slave, which should answer with
the result of the write operation. Segment operation consists of one or more segmented write operations and an SSC
write response service.

SSC process command: A process command is a special non-periodic data. Each process command has a unique
IDN and specified data elements, which are used to start certain specific functions or processes of the servo device.
It usually takes a while to execute these functions or processes. The process command only triggers the start of the
process, so after that, the service channel it occupies will become immediately available for the transfer of other
non-periodic data or process commands. There is no need to wait until the triggered functions or processes to
complete their execution.

-115-

AX series programmable controller software manual Application Programming

8 Application Programming

8.1 Single axis control
8.1.1 Single axis control programming description

The motion control of the AX7x series controller with the servo axis (such as DA200) is implemented based on the
EtherCAT bus network. Each EtherCAT bus cycle will perform a calculation and issue a control command to control the
servo. Different from the previous pulse control mode, EtherCAT bus is entirely based on the software. Pay attention to the
following points when applying:

< MC-related POUs should be configured to execute under the EtherCAT task. Most MC function blocks cannot run
normally when placed in the POU of the low-priority Main tasks.

< The PDO configuration table needs to be configured with relevant data objects. Otherwise the servo will not be able
to run due to the missing communication data object configuration. No error alarm will be generated for this case,
making it more difficult to troubleshoot.

<~ The controller can set the parameters of the servo by configuring SDO.

<~ MC function block instance can only be used for a unique servo axis control. Error occurs if it is used for multiple
servo axis controls.

<~ MC function block must be used to monitor the running servo axis to avoid error caused by program logic jump
without MC function block monitoring. Such error is usually difficult to detect.

< Pay attention to the safe handling of the debugging, and ensure that the signal configuration is consistent with the
practical application. If the servo system uses incremental encoder, zeroing is required prior to normal operation. For
movements within a limited range (e.g. a screw), limit and safety signals should be set.

8.1.2 MC function blocks commonly used for single-axis control

MC function block (FB) is also known as MC command. In fact, the object instance of MC function block is used in the
user program, and the servo axis is controlled by MC object instance, for example:

MC Powerl: MC Power;//Statement instance MC_Powerl
MC Powerl (Axis=Axisl,)

Single-axis control is generally used for positioning control, that is, the servo motor drives the external mechanism to
move to the specified position. Sometimes the servo is required to run at a specified speed or torque. In single-axis control,

the following MC function blocks are commonly used:

Table 8-1 MC function blocks commonly used for single-axis control

Control operation Required MC command Description
Run this command to enable the servo axis to
Enable servo MC_Power .
perform subsequent running control.
o Command the servo to run to a specified
Absolute positioning MC_MoveAbsolute) .
coordinate point.
. L . Runs the specified distance with the current
Relative positioning MC_MoveRelative i
location as a reference.
The jog operation of the servo motor is often
)) used for low-speed test runs to inspect
Servo jog operation MC_Jog]) o
equipment or adjust the position of the servo
motor.

-116-

AX series programmable controller software manual Application Programming

Control operation Required MC command Description
Relative superposition . Based on the current running command of the
o MC_MoveAdditive - . .
positioning servo, run the specified distance relatively.

Speed control MC_MoveVelocity Command the servo runs at the specified speed.

Command the servo to suspend operation. If

Servo suspend MC_Halt MC_Movexxx is triggered again, the servo can
run again.

Command the servo to stop. The servo can run
Emergency stop MC_Stop again only after the stop command is reset and
MC_Movexxx is triggered.

When the servo stops with an alarm, this
Alarm reset MC_Reset .
command is used to reset the servo.

Command the servo to start homing operation.
) Both the home signal of the application system
Servo homing MC_Home . .

and the limit signals on both sides are connected

to the DI port of the servo.

Command the control system to start homing

.) operation. Both the home signal of the application
Controller homing MC_Homing . .
system and the limit signals on both sides are

connected to the DI port of the controller.

8.2 Cam synchronization control

Electronic cam (abbreviation ECAM) utilizes the constructed cam curves to simulate the mechanical cam to meet the
relative motion software system between main shaft and camshaft system the same to mechanical cam system.
Electronic cams can be applied to various fields, such as automobile manufacturing, metallurgy, machining, textiles,
printing, and food packaging. The electronic cam curve is a function curve with the main shaft pulse (active shaft) input as
X and the corresponding output of the servo motor (camshaft) as Y=F(X).

rd) _ T

[@

a \C:\

X FX)

Figure 8-1 Electronic cam diagram
The AX series programmable controller electronic cam function has the following features.
< CAM curves are easy to draw: Cams can be described by cam chart, CAM curves or array. It supports multiple cam
chart selection and dynamic switching during running.
CAM curves are easy to correct: The running cam table can be modified dynamically.
Support one master and multiple slaves: one main shaft can have multiple slave shafts corresponding to it.

Cam lifter: multiple cam lifters and multiple setting intervals are allowed.

R

Cam clutch: It can make the cam enter and exit the cam running through the user program.

-117-

AX series programmable controller software manual Application Programming

<~ Special functions: Virtual main shaft, phase offset and output superposition are supported.

Note: "online modification of CAM curve" refers to the modification of the key point coordinates of the CAM curve
according to the needs of control characteristics during the execution of the program written by the user. The content to be
modified is generally the key point coordinates, but it can also be the number of key points, the distance range of the main
axis.

The AX series programmable controller electronic cam function contains three control elements:

(1) Main shaft: Reference for synchronous control.

(2) Slave shaft: a servo axis that follows the movement of the main shaft according to the non-linear characteristics.
(3) Cam table: Data table or cam curve describing the relative position, range, periodicity of the master-slave shafts.
The commonly used function blocks related to electronic cam are listed in the following table.

Table 8-2 Commonly used electronic cam function blocks

MC Command Description

Run this command to associate the main shaft, slave shaft and
MC_CamTableSelect

cam table.
MC_Camin Let the slave shaft enter the cam running
MC_CamOut Let the slave shaft exit the cam running
MC_Phasing Main shaft phase modification

8.2.1 Periodic mode of the cam table

(1) Single cycle mode (Periodic:=0): After the cam table cycle is completed, the slave shaft leaves the cam running state,
as shown in Figure 8-2.

MC_CamTableSelect Priodic=0

Slave axis position |

|
|Slave axis position

Master axis position ¥
T 360 360
N O

I
T
0

MC_Camin Execute=1

Figure 8-2 Single cycle mode

(2) Periodic mode (Periodic:=1): After the cam table cycle is completed, the slave shaft will start the next cam cycle until
the user program commands it to exit the cam running state, as shown in Figure 8-3.

Slave relative position mode
MC_CamTableSelect SlaveAbsolute:=False /«— —

| e
|Slave axis poswtion’_/
— |

o |

Slave axis position | | _/"Slave axis position
|

Master axis poswtionEI
|

|
T
0

MC_Camln Execute=1

Figure 8-3 Periodic mode

-118-

AX series programmable controller software manual Application Programming

8.2.2 Input method of cam table

(1) When creating a new cam table, the system will automatically generate the simplest cam curve, on which the user can
edit and customize the CAM curve table.

(2) User can increase or decrease the number of key points in the cam curve or change the coordinates of the key points.

(3) The line pattern between the two key points of the cam curve can be set to a straight line or a quantic polynomial, and
the system will optimally optimize each curve to minimize sudden changes in speed and acceleration.

Devices >~ 2 x| B pcere @ cam x 2
= . [+
9 Untiteds Cam | cam table | Tappets | Tappet table|
= (@ Device (INVT AX7X) = =
=0 PLC Logic H Properties - Cam [Device: PLC Logic: Application] & 9 | |
= € Application 08 -
] H
@pzam = Common | Buid | Access Control| Cam —
) Library Manager < Dimensions
[8 pLC_PRG (PRG) 1004- i Master start position: 0 Master end position: 360
= (& Task Configuration
%’ o o L1 Slave start position: 0 Slave end position: 360 masterposition [u]
& MainTask
&1 PLC_PRG Period
3 HIGH_PULSE_IO g [7] Smooth transition Slave period: 360
3 SoftMotion General Axis Pool 1545
S Continuity requirements
1= [¥] Position V] Velocity V| Acceleration] 3erk
05 Compike format
(@) polynomial (XYVA) masteripositisn [u]| | |
(©) one dimensional point array Elements: 256 v 3
00 () two dimensional point array
0.0 =
0o master posiion [u]
0.0 P 4 0. 280 ~abo 320 340
5 M
0038
0045
o :
0.0025
0.0047-
Al s { master position [u]
= T @ .
00{1 20 4 6 8 100 120 140 160 180 200 220 240 260 280 300 320 340

Figure 8-4 CAM curve
8.2.3 Data structure of cam table

Invtmatic Studio contains data structure for each CAM table that describes the feature data of the CAM table. The
following figure describes the data structure of the "CAMOQ" cam table. Please note the names of the variables in the
structure.

[Cam | Cam table | Tappets | Tappet tabler‘l

X Y Vv A J SegmentType min(Position) max(Position) max(|Velocity]) max(JAcceleration])
; 0 0 0 0 0
| L Poly5 0 120 1.51200000000... 0.032835282941414...
| @ 120 120 1 0 0
| L Poly5 120 240 1 0
| @ 240 240 1 0 0
| L Poly5 240 360 1.512 0.032835282941414...
360 360 0 0 0

Figure 8-5 Data structure of cam table

Invtmatic Studio has an internal data structure to characterize the CAM table. We can also write a CAM table manually, or
modify the CAM feature data by accessing the data structure.

Note: When we state the CAMO cam table, the system automatically states the CAMO data structure of the global variable
type by default, along with the CAMO_A|i] array. For example, modify the number of key points or coordinates of the CAMO
cam table in the user program.

CAMO. nElements:=10; // Change the number of key points to 10.
CAMO. xEnd:=300; // Change the end point of the main shaft to 300.
/I[For example, modify the coordinates of two key points in the user program.

CAMO A[2].dx:=10;

-119-

AX series programmable controller software manual

Application Programming

CAMO A[2].dy:=30;
CAMO A[2].dv:=1;
CAMO A[2].da:=0;
CAMO A[3].dx:=30;
CAMO A[3].dy:=50;
CAMO A[3].dv:=1;

CAMO A[3].da:=0;

8.2.4 CAM table reference and switch

CAM table is stored in the controller with an array, which can be pointed to by specific MC_CAM_REF variable type, such

as statement:

CAM table g: MC_CAM REF;

You can assign a value to this variable, namely pointing it to a specific CAM table:

CAM table g:= Cam0O; // Pointto the required CAM table.

CAM table g: MC_CAM REF; // Cam table pointer;

TableID: uint; // Cam table selection command that can be set by HMI;

Case TableID of

0: CAM table g:

CAM table A;

1: CAM table CAM table B;

Q
Il

2: CAM table g:

CAM table C;

End case

MC CamTableSelect 0 (//CAM relationship
Master:= Virtual main shaft,
Slave:= CAM slave shaft,

CamTable:= CAM table q,

Execute:= bSelect, // Rising edge triggers CAM table selection.

Periodic:= TRUE,
MasterAbsolute:=FALSE,

SlaveAbsolute:= FALSE) ;

In the above example, the assignment operation of the MC_CAM_REF variable can be used to switch multiple CAM

tables.

-120-

AX series programmable controller software manual Function module command

Appendix A Function module command

A.1 ModbusRTU command library

A.1.1 Definition and use of ModbusRTU master command library variables

A.1.1.1 Variable definition

Module Variable Type Function Remarks
Serial port .
L 0: Inactive
Executel BOOL initialization .
. 1: Active
function
Baudl DINT Baud rate E.g. 115200
.) E.g. 8 bits(without 7-bit
Databits1 INT Data bit
ASCII)
) INPUT X X)
Stopbits1 INT Stop bit E.g. stop bit 1, stop bit 2
0: No check
Parityl INT Check bit 1: Odd check
ModbusRTU_Master
] 2: Even check
Init._ COM1
- T Slavel UINT Slave ID 1-128
Timeoutl DINT Timeout time |E.g. 1000
0: Command is executing
bDonel BOOL |Complete sign|l: Command execution
complete
OUTPUT . 0: No error
Errorl BOOL Error sign .
1: Error exists
See ModbusRTU error code
ErrorlD1 INT Error code
table.
Read and|0: Inactive
XExecutel BOOL . . .
write function |1: Active
) 0x01, 0x03, 0x05, 0x06,
Fun_Codel INT Function code
- OxOF, 0x10
Addrl UINT Address 0x0000-0OxFFFF
INPUT
Read: 1-250
DataCountl UINT Count .
ModbusRTU_Master Write: 1-240
_Fun_CcoOM1 POINTE Point to the address where
DataPtrl R TO|Data pointer |the read and write data is
INT stored.
. 0: No error
Errorl BOOL Error sign .
1: Error exists
OUTPUT
See ModbusRTU error code
ErrorlID1 INT Error code tabl
able.

When serial port 2 is used as ModbusRTU_Master master, the number of variables in serial port 2 is the same. The
number after the variable name is changed from "1" to "2", e.g. "ModbusRTU_Master_Init_COM2".

A.1.1.2 How to use

1) ModbusRTU_Master master connects to the slave

-121-

AX series programmable controller software manual

Function module command

Module Setting item Function Example
Executel Sla_ve enable Enable := TRUE
variable
Baudl Baud rate Baudl := 19200
ModbusRTU_Master | Databitsl Data bit Port :=8
_Init_COM1 Stopbits Stop bit Unit := 1
Parityl Check bit Parityl:=2
Slavel Slave ID Slavel:= 12
Timeoutl Timeout time Delay Time := 1000

To define the ModbusRTU slave to be connected, refer to the above COML1 parameters table for unified configuration. The
reference example (structured text ST) is as follows:

" defined variahle

2) After completing the configuration of the relevant parameters, set the communication function parameters as follows:

™ _Wastexr T oML 1 odbea piEI)_Masrvex Fur (N8l ;

" To connect slave

station parameters

~functianal parameter

Figure A-1 Parameter configuration example

Setting item Function Example

RTU communication function enable

XExecutel RW:= TRUE
code

Fun_Codel Function code Fun Codel:=0x03
Start address of the read and write

Addrl) Addr := 2001
register
Number of the read and write

DataCountl) Conut := 12
registers
Pointer to the address of the

DataPtrl . ADR (DATE RTU1)
read/write data storage area -

-122-

AX series programmable controller software manual Function module command

1 ModbusRTU Master Init COMI_ 1
2 Executel:= Executel 1,

3 Baudl:= Baudl 1,

- Databitsl:= Datakitsl_1,
5 Stopkitsl:= Stopbkitsl 1,
3 Parityl:= Parityl 1,
Slavel:= slavel 1,

B Timsoutl:= Timeoutl_ 1,

9 bDonel=> ,

10 Errorl=> ,

11 ErrorIDl=>) ;

13 ModbusRTU Master Fun COM1 1
14 xExecutel:= xExecutel 1,

15 Fun Codel:= Fun Codel 1,

16 Addrl:= Addrl_1,

1 DataCountl:= DataCountl 1,
18 DataPtrl:= ADR(DataPtrl 1),
9 Errorl=> ,

il ErrorIDl=>) ;

Figure A-2 Parameter configuration example

A.1.2 Definition and use of ModbusRTU slave library variables

A.1.2.1 Variable definition

Module Variable Type Function Remarks
Serial
o I. p9rt 0: Inactive
Executel BOOL | initialization)
. 1: Active
function
Baudl DINT Baud rate |E.g. 115200
Databits1 INT Data bit |E.qg. 8 bits, 7 bits
Stopbits1 INT Stop bit E.qg. stop bit 1, stop bit 2
P INPUT P 9 P P
0: No check
Parity1 INT Check bit |1: Odd check

ModbusRTU_Slavel 2: Even check

Slave_Addrl UINT |Slave number|1-128

Read and |0: Inactive

Enablel BOOL .]

write function |1: Active

Complete |0: Incomplete
Donel BOOL .

sign 1: Completed
OUTPUT
See ModbusRTU error code

ErroriD1 BYTE Error code

table.

-123-

AX series programmable controller software manual

Function module command

A.1.2.2 How to use

1) Configure serial port parameters to establish Modbus RTU master and slave connections.

Module Setting item Function Example
Executel Slave enable variable Enable := TRUE
Baudl Baud rate Baudl := 19200
Databits1 Data bit Port :=8
ModbusRTU_Slavel Stopbits Stop bit Unit :=1
Parityl Check bit Parityl:=2
Timeoutl Timeout time Delay Time := 1000
Slave_Addrl Slave number Slavel:= 12

Set the slave according to the serial port configuration parameters of the ModbusRTU master, referring to the parameters

in the above table. (Slave_Addrl should map to the Slavel of the master.)

2) ModbusRTU master and ModbusRTU slave perform read and write data communication

Enable Executel to active the ModbusRTU slave. If the function code of the master is 0x03, read the holding register. If
the function code of the master is 0x10, write multiple registers. The corresponding storage area can be defined in the
variable area, and its size should not be less than the size of the data to be written by the ModbusTCP master. If the
master function code is OxOF (write multiple coils) or other function codes, the operation is the same as the above

process.

-124-

AX series programmable controller software manual Function module command

A.2 ModbusTCP command library

A.2.1 Definition and use of ModbusTCP master command library variables
A.2.1.1 Variable definition

Variable Type Function Remarks
ModbusTCP))
Enable BOOL . 0: Inactive 1: Active
function
1P STRING Slave IP address E.g. “192.168.1.13”
Port DINT Slave port number |E.g. 502
Unit INT Slave unit number |Non-negative integer
DelayTime INT Timeout time Non-negative integer
Function code . .
Fun_Enable BOOL 0: Inactive 1: Active
enable

0x03: Read multiple registers

. mode
fun_code BYTE Function code

0x10: Write multiple registers
INPUT

mode

Read and write
Addr UINT . E.g. 2000, 2001
register address

Number of the read|Max. number of the read and

Count INT) .) . .
and write registers |write registers at once is 120.
CoilSingleData INT Write single coll The value is 0 or 1.
BitPtr POINTER TO |Pointer to read and|Save the bit data to be read and
i
BOOL write bit data written
_ |Store the location information of
Read and write
DataPtr POINTER TO INT| . the data read or store the data to
pointer . .
be written to the register.
) 0: Command is executing
Done BOOL Complete sign .
1: Command execution complete
Error OUTPUT BOOL Error sign 0: No error 1: Error exists
See ModbusTCP error code
ErroriD INT Error code tabl
able.

A.2.1.2 How to use
1) ModbusTCP_Master master connects to the slave

Set the parameters of the ModbusTCP slave to be connected in the project monitoring state as shown in the following

table.
Setting item Function Example
Enable Slave enable variable Enable := TRUE
IP address of a Modbus TCP slave connected to
IP address IP := '192.168.1.13"
the master

Port number of a Modbus TCP slave connected
Port Port := ‘502’
to the master

i Unit number of a Modbus TCP slave connected
Unit Unit := 3
to the master

Delay Time Function start timeout time Delay Time := 1000

-125-

AX series programmable controller software manual Function module command

When the master accesses a single slave, the above variables should be assigned separately. The reference example
(function block diagram FDB to create the main program) is as follows:

| war
| IP: STRING i=
Enable: BOOL :=

: DINT =
o < —IDefine the

‘ - parameters
| Addr: UINT :=

Count: UINT 1=

i .%] OF BOOL:

| .0] OF INT:
&} ModbusTCE REQO : ModbusTCP REQ:

ZND VAR

ModbusTCP_REQOC

NodbuaTCP_REQ

=41z

- ’*:!r.e.r.e

—fiPort

e1ay7 e JeTERE cONfiguration

Fun_Znable ~-{Fun_ Enabl:
s By |ty arameter

e —12fun_code

Figure A-3 Parameter configuration example

The function block in the above figure represents an independent ModbusTCP master and slave connection. To add a
new ModbusTCP master and slave connection, create a new function block first, and then configure the new parameters
according to the parameter configuration example in the above figure.

2) After completing the configuration of the relevant parameters, set the communication parameters as follows:

Setting item Function Example

Fun_Enable Function code enable switch Fun Enable:= TRUE

Read and write multiple
fun_code]] . Fun code := 3
register coil function -

Start address of the read and
Addr . i Addr := 2001
write register

Number of the read and write
Count . Conut := 12
registers

Pointer to the address of the
DataPtr . ADR (DATE TCP)
read/write data storage area -

ModbusTCP_REQO
Modbus TCP REQ
Ip—{1p Z Dene
Enable —Enable Error-
Pozt —Pozt ErrozID[-
Unit —{Unic
DelayTime

Fun_Enshle
- o
fun_code paad

Parameters
CeilSingl T 3ingievate
A T BizPrx
ADR {DataPty) —pHDatafrr

Figure A-4 Parameter configuration example

-126-

AX series programmable controller software manual Function module command

Each of the operation blocks in the figure above represents a ModbusTCP request. The figure defines a
ModbusTCP_Master and slave connection. The first and third operation blocks represent the read operation of the holding
register (0X03) of different slaves, and the second and fourth operation blocks represent the writing of a certain number of
data in the registers of different slaves.

To add different communication requests for the above ModbusTCP_Master master and slave connection, create the
same function block and change the communication parameters according to the example in the figure.

A.2.2 Definition and use of ModbusTCP slave command library variables
A.2.2.1 Variable definition

Variable Type Function Remarks
Enable BOOL ModbusTCP_Slave function 0: Inactive 1: Active
Port INPUT DINT Slave port number Default value is 502.
Unit INT Slave unit number Slave unit number (1 -247)
0: Command is executing 1:
Done BOOL Complete sign Command execution
completed
IP address of the local
P OUTPUT STRING | IP address of the slave machine (cannot be changed
here)
Error BOOL Error sign 0: No error 1: Error exists
ErrorlD INT Error code tST)T ModbusTCP error code
able.

A.2.2.2 How to use

(1) ModbusTCP master reads data from ModbusTCP_Slave

Enable Enable to active the ModbusTCP_Slave slave. If the master function code is 0x03, read the holding register. Set
the size of InputSize, create an array of InputSize to store the data to be read by the master, and then assign the address
of the array to the Inputs pointer. If the corresponding master function code is 0x01 (read coil), the operation is the same
as the above process.

(2) ModbusTCP master writes data to ModbusTCP_Slave

Enable Enable to active the ModbusRTU slave. If the function code of the master is 0x10, write multiple registers. The
corresponding storage area can be defined in the variable area, and its size should not be less than the size of the data to
be written by the ModbusTCP master. If the master function code is 0xOF (write multiple coils) or other function codes, the
operation is the same as the above process.

A.3 CmpHSIO_C library description

CmpHSIO_C library contains function blocks for counting, latching, preset values, pulse width measurement, timing
sampling, count value comparison and other functions. The application required for counting is completed by calling these
function blocks.

A.3.1 Counter_HP

This function block enables single pulse, quadrature, timing, direction + pulse counting.

When a counter is required by other modules, the counting function block will first call this module to set the corresponding
counter. The parameter "Task cycle number of update frequency” is used so that at least 1 pulse change can be read
within the update frequency period. Otherwise the frequency will be displayed as 0. The number of channels ranges from
0 to 7. Due to the interference of high-speed counting input, the filter parameter Filt_Set needs to be set in the device
description file. The recommended value is 2us.

-127-

AX series programmable controller software manual

Function module command

Table A-1 Counter

Parameter Type Input/Output type Function
True enables counting and
Enable BOOL IN))
False disables counting.
Channel BYTE IN Number of channels[0,7]
For counter parameters, see
CounterParameter | Counter_Parameter IN CounterParameter
parameter description.
Value DINT ouT Current count value
Frequency DWORD ouT Counting frequency (Hz)
Velocity DWORD ouT Counting velocity (r/min)
True indicates negative
Direction BOOL ouT direction and False indicates
positive direction.
True indicates disconnected
Break BOOL ouT and False indicates
connected.
Error BOOL ouT Error sign
ErrorlD BYTE ouT Error code
Counter_HP
—Enable Value—
—Channel Frequency —
— CounterParameter Velocityf—
Directionf—
Break—
Errorf—
ErrorlDfF—
Figure A-5 Counter
CounterParameter parameter description
STRUCT Counter_Parameter
MName Type Inherited from Address Initial Comment
Control WORD 1 EHliES =R
TaskPeriodMum BYTE 1 B R EE BT 5 BERSY
UpValue DINT 20000 LERE®E
DownValue DINT -100 TEREERS
Ratio DWORD 10000 3RE
CounterParam_HP
—Enable CounterParameter f—
— Control
— TaskPeriodMum
—{UpValue
— DownValue
—Ratio

-128-

AX series programmable controller software manual Function module command

Control: For settings, please refer to the following Control setting description.

TaskPeriodNum: Set the number of task cycles between the pulse frequency updates.

UpValue: the upper limit value of the counter. This is the maximum value when the count is a linear count.

DownValue: the lower limit value of the counter. This is the minimum value when the count is a linear count.

Ratio: the resolution of the counter, which represents the count value of one revolution, used for frequency calculation.

The following table shows the correspondence between the bit of the control word and function.

Bit Control word Function value description

: Disable

0 Enable counting (timing) Enabl
: Enable

o : Rated quadrature frequency
1-2 Frequency multiplication mode

: Quadruple quadrature frequency
: Disable

0
1
0
1
0
1: Enable
0
1
2
3
0

3 Clear counting (timing)

: lus

: 10us
: 100us
s 1ms

4-6 Timing unit

Single pulse and timing direction,
. o o positive
7 Single pulse and timing direction) . L
1: Single pulse and timing direction,
negative
0: Cycle
1: Linear

8 Counting mode

1: Software trigger write

2: External trigger write, external trigger
source CnT

9-11 Latch control of preset and count value] . . .
3: Comparison consistent trigger write

4: Latch function, external trigger source
cnT

12-15 Reserved Reserved

A.3.1.1 Single pulse counting

Configure the input port to a counting function and the counting mode to single pulse counting. Each counting channel has
two signals CxA and CxB, where A is pulse input and B is low level, and x is the number of channels, 0 =< x <= 7.
Currently the counter supports a maximum of 8 channels.

Function configuration
A: Counting mode configuration
Counting mode function configuration

//During the counting mode configuration for counter 0 and 1, set single pulse value to 0, the low 4 bits of the byte to
counter 0, and the high 4 bits to counter 1.

xmodea:=16#00;

/[During the counting mode configuration for counter 2 and 3, set single pulse value to 0, the low 4 bits of the byte to
counter 2, and the high 4 bits to counter 3.

xmodeb := 164#00;

-129-

AX series programmable controller software manual

Function module command

Configure variable mapping for counter mode

"

[¥Mode_Seth

"

[¥Mode_SetB

"% Application.xmadea

" Application.xmadeb

B: Input terminal function configuration, set to counting function
in0:=inl:=1;//Set input port to counting function for counter 0.
Input terminal variable mapping

" Application.ind] In0_Configure

" Application.inl] In1_Configure

C: Signal filter parameters configuration

SoE0
SoE:

BYTE
BYTE

BYTE
BYTE

filt set:= 8;//The unit is 0.25us, which is equivalent to 2us. This value can be adjusted for different

interference.
Filter parameter variable mapping

"% Application. filt_set " Filt_Set

D: Control parameter configuration

Set control parameters according to function blocks

Set the control word. The following operation is based on bit.
/[Enable counting

Control.0:=1;

BYTE

/IFrequency multiplication setting 1: quadruple frequency and only quadrature counting is valid, O: rated

frequency
Control.1l:=0;

Control.2:=0;

/IClear counting 1: Enable O: Disable

Control.3:=0;

/ICounting direction O: Positive 1: negative

Control.7:=0;

/I Counting modes 1: Linear 0: Cycle

Control.8:=0;

/[Select timing unit. 0 is 1us, 1 is 10us, 2 is 100us, 3 is 1ms, and this parameter is invalid in non-timing mode.

Control.4:=0;

Control.5:=0;

-130-

AX series programmable controller software manual Function module command

Control.6:=0;
Preset value control:
1 Software trigger write;

2 External trigger write. Select the external trigger source among X8, X9, XA, XB (changed to: CnT, where n is the
count channel, 0 =< n <= 3. Each trigger source corresponds to a count channel).

3 Comparison consistent trigger write
Latch control of count (timing) value:

4 Enable the count value latching. Select the external trigger source among X8, X9, XA, XB (changed to: CnT,
where n is the count channel, 0 =< n <= 3. Each trigger source corresponds to a count channel).

Control.9:=0;
Control.10:=0;

Control.11:=0;

counterparam[0] .Control:= Control;//Control word
counterparam[0] .TaskPeriodNum:=1;//The number of task cycles between the pulse frequency updates
counterparam[0] .UpValue:=10000000;
counterparam|[0] .DownValue:=-1000;
counterparam[0] .Ratio:=10000;
Program code example
CounterO (
Enable:= TRUE,
Channel:= 0, //Selectcounter 0. Select a value from [0,7] for other counter.
CounterParameter:=counterparam[0],
Value=> value0, //Outputcount
Frequency=> fre0, //Outputcountfrequency value
Velocity=> vel0Q, //Output count velocity value
Direction=> ,
Break=> ,
Error=> ,
ErrorID=>);

Time sequence description

Figure A-6 Single pulse input diagram

-131-

AX series programmable controller software manual Function module command

Note:

Single-pulse counting needs to be cumulative or subtractive depending on the configured counting direction. In forward
running, the counter will increase by one every time a pulse comes, otherwise it will decrease by one. n indicates counting
channel, 0 =<n<=7.

Single pulse is commonly used in the counting of objects on the production line. The sensor outputs a high-level pulse
every time it detects an object.

A.3.1.2 Quadrature encoder pulses

The quadrature signal is commonly used in the output signal of the quadrature encoder. It contains signals A, B, and Z,
where A and B are pulse signals with a phase difference of 90°, and Z is the origin signal. One pulse is generated per
revolution. Z signal is generally used to clear counters, compensation, and origin positioning. It is barely used in counting.

Configure the input port to a counting function, and the counting mode to a quadrature counting. All 16 input ports can be
selected for quadrature counting. Currently the counter supports a maximum of 8 channels.

Function configuration
A: Counting mode configuration
Counting mode function configuration

//During the counting mode configuration for counter 0 and 1, set quadrature counting value to 1, the low 4 bits of the
byte to counter 0, and the high 4 bits to counter 1.

xmodea:=16#11;

//During the counting mode configuration for counter 2 and 3, set quadrature counting value to 1, the low 4 bits of the
byte to counter 2, and the high 4 bits to counter 3.

xmodeb := 1lo#11;

Configure variable mapping for counter mode

4

) ¥Mode_SetA %OEE BYTE

4

) XMode_SetB HOEF BYTE

K@ Application. xmodea
K@ Application. xmodeb

B: Input terminal function configuration, set to counting function

in0:=1in1:=1;//Set input port to counting function for counter O.

Input terminal variable mapping

"% Application.ind
"% Application.inl

[] In0_Configure SoRg BYTE
[] Ini_Configure SRt BYTE

C: Signal filter parameters configuration

filt set:=8;//The unitis 0.25us, which is equivalent to 2us. This value can be adjusted for different interference.

Filter parameter variable mapping
"% Application.filt_set [Filt_Set SLOE28 BYTE

D: Control parameter configuration

-132-

AX series programmable controller software manual Function module command

Set the control word. The following operation is based on bit.
//[Enable counting
Control.0:=1;
/IFrequency multiplication setting 1: quadruple frequency and only quadrature counting is valid, O: rated frequency
Control.1l:=0;
Control.2:=0;
/IClear counting 1: Enable O: Disable

Control.3:=0;

/ICounting direction O: Positive 1: negative
Control.7:=0;

/ICounting modes 1: Linear 0: Cycle
Control.8:=0;

//Select the timing unit, where 0 indicates 1us, 1 indicates 10us, 2 indicates 100us, 3 indicates 1ms. This parameter
is invalid in non-timing mode.

Control.4:=0;
Control.5:=0;
Control.6:=0;

Preset value control:

1 Software trigger write;

2 External trigger write. Select the external trigger source among X8, X9, XA, XB (i.e. CnT, where n is the count
channel, 0 =< n <= 3. Each trigger source corresponds to a count channel).

3 Comparison consistent trigger write
Latch control of count (timing) value:

4 Enable the count value latching. Select the external trigger source among X8, X9, XA, XB (i.e. CnT, where n is the
count channel, 0 =< n <= 3. Each trigger source corresponds to a count channel).

Control.9:=0;
Control.10:=0;

Control.11:=0;

Set control parameters for counting function blocks

counterparam[0] .Control:= Control;//Control word

counterparam[0] .TaskPeriodNum:=1;//The number of task cycles between the pulse frequency updates
counterparam[0] .UpValue:=10000000;

counterparam[0] .DownValue:=-1000;

counterparam[0] .Ratio:=10000;

-133-

AX series programmable controller software manual Function module command

Program code example

Counter0 (
Enable:= TRUE,
Channel:= 0, //Selectcounter 0. Select a value from [0,7] for other counter.
CounterParameter:=counterparam[0],
Value=> valueO, //Outputcount
Frequency=> fre0, //Output count frequency value
Velocity=> vel0O, //Output count velocity value
Direction=> ,
Break=> ,
Error=> ,
ErrorID=>);

Time sequence description

(1) Forward

CnA

CnB

(2) Reverse

CnA

CnB

Figure A-8 Quadrature pulse reverse input diagram
Note:

Quadrature counting needs to be cumulative or subtractive depending on the direction of encoder rotation. In forward
rotation (phase A is 90° ahead of phase B), accumulation is performed according to the frequency multiplication mode.
The counter is increased by one for each CnA cycle in rated frequency mode, and increased by one for each signal edge
of CnA and CnB in quadruple frequency mode. In reversed rotation (phase B is 90° ahead of phase B), the counter is
decreased by one for each CnA cycle in rated frequency mode, and decreased by one for each signal edge of CnA and
CnB in quadruple frequency mode. n indicates counting channel, 0 =<n <=7.

A.3.1.3 Timing counting

The input port can be left blank. Configure the counting mode to timing counting, which counts according to the set time
unit. Currently the counter supports a maximum of 8 channels.

Timing counting actually implements the clock function. It can preset the timing start point, time unit, and timing duration
(by setting the comparison value), and output the comparison equal signal when the timing duration is reached. The
parameters can also be reset and re-timed after the timing is complete. Timing counting needs to be cumulative or
subtractive depending on the configured counting direction. In forward running, the counter will increase by one every

-134-

AX series programmable controller software manual Function module command

other cycle, otherwise it will decrease by one.
Function configuration
A: Counting mode configuration
Counting mode function configuration

//During the counting mode configuration for counter 0 and 1, set timing counting value to 2, the low 4 bits of the
byte to counter 0, and the high 4 bits to counter 1.

xmodea:=16#22;

/I During the counting mode configuration for counter 2 and 3, set timing counting value to 2, the low 4 bits of the
byte to counter 2, and the high 4 bits to counter 3.

xmodeb := 16#22;

Configure variable mapping for counter mode

"% Application.xmodea [¥Mode_SetA opde BYTE

] Application, xmadeb [¥Mode_SetB %OBiF BYTE

B: Input terminal function configuration, set to counting function (No effect if not configured)
in0:=in1l:=1;//Set input port to counting function for counter 0.
Input terminal variable mapping

" Application.in0 [In0_Configure LLORS BYTE

" Application.inl [In1_Configure LoRt BYTE

C: Signal filter parameters configuration (No effect if not configured)

filt set:= 8;//The unit is 0.25us, which is equivalent to 2us. This value can be adjusted for different
interference.

Filter parameter variable mapping

i] Application. filt_set [Filt_Set SOE28 BYTE

D: Control parameter configuration
Set the control word. The following operation is based on bit.
/[Enable counting
Control.0:=1;

/[Frequency multiplication setting 1: quadruple frequency and only quadrature counting is valid, O: rated
frequency.

Control.1l:=0;
Control.2:=0;

/[Clear counting 1: Enable O: Disable

-135-

AX series programmable controller software manual Function module command

Control.3:=0;

//Counting direction O: Positive 1: negative

Control.7:=0;

//Counting modes 1: Linear 0: Cycle
Control.8:=0;

//Select the timing unit, where 0 indicates 1us, 1 indicates 10us, 2 indicates 100us, 3 indicates 1ms. The counter
counts in this setting unit.

Control.4:=0;
Control.5:=0;
Control.6:=0;
Preset value control:
1 Software trigger write;
2 External trigger write. Select the external trigger source among X8, X9, XA, XB.
3 Comparison consistent trigger write
Latch control of count (timing) value:
4 Enable the count value latching. Select the external trigger source among X8, X9, XA, XB.
Control.9:=0;
Control.10:=0;

Control.11:=0;

Set control parameters for counting function blocks

counterparam[0] .Control:= Control;//Control word

counterparam[0] .TaskPeriodNum:=1;//The number of task cycles between the pulse frequency updates
counterparam([0] .UpValue:=10000000;

counterparam[0] .DownValue:=-1000;

counterparam[0] .Ratio:=10000;

Program code example
CounterO (
Enable:= TRUE,
Channel:= 0, //Selectcounter 0. Select a value from [0,7] for other counter.
CounterParameter:=counterparam[0],
Value=> value0O, //Outputcount
Frequency=> fre0, //Outputcountfrequency value

-136-

AX series programmable controller software manual Function module command

Velocity=> vel0, //Output count velocity value
Direction=> ,
Break=> ,
Error=> ,
ErrorID=>);
Time sequence description
Note: All count channels can perform timing counting.

A.3.1.4 Pulse + direction counting

Pulse + direction signal includes CxA and CxB. CxA is connected to pulse signal, and CxB is connected to direction signal.
The high level of the direction signal indicates the forward running, and the low level indicates the reversed running. X is
the number of channels, 0=<x <=7.

Configure the input port to a counting function, and the counting mode to the pulse + direction counting. All 16 input ports
can be selected for pulse + direction counting. Currently the counter supports a maximum of 8 channels.

Function configuration
A: Counting mode configuration
Counting mode function configuration

//During the counting mode configuration for counter 0 and 1, set pulse + direction value to 3, the low 4 bits of the
byte to counter 0, and the high 4 bits to counter 1.

xmodea:=16#33;

//During the counting mode configuration for counter 2 and 3, set pulse + direction value to 3, the low 4 bits of the
byte to counter 2, and the high 4 bits to counter 3.

xmodeb := 16#33;
Configure variable mapping for counter mode

"% Application.xmodea @ ¥Mode_SetA MOEdE BYTE

T Application. xmodeb @ ¥Mode_SetB MOBF BYTE
B: Input terminal function configuration, set to counting function

in0:=1inl:=1;//Set input port to counting function for counter O.

Input terminal variable mapping

] Application.ind [In0_Configure SLoEe BYTE

] Application.inl [In1_Configure SL0Rt BYTE
C: Signal filter parameters configuration

filt set:= 8;//The unit is 0.25us, which is equivalent to 2us. This value can be adjusted for different
interference.

Filter parameter variable mapping

i] Application. filt_set [Filt_Set SOE28 BYTE

-137-

AX series programmable controller software manual Function module command

D: Control parameter configuration
Set the control word. The following operation is based on bit.
/[Enable counting
Control.0:=1;

/I[Frequency multiplication setting 1: quadruple frequency and only quadrature counting is valid, O: rated
frequency

Control.1l:=0;
Control.2:=0;
/IClear counting 1: Enable O: Disable

Control.3:=0;

/ICounting direction 0: Positive 1: negative

Control.7:=0;

/[Counting modes 1: Linear 0: Cycle
Control.8:=0;

/I Select the timing unit, where 0 indicates 1us, 1 indicates 10us, 2 indicates 100us, 3 indicates 1ms. This parameter
is invalid in non-timing mode.

Control.4:=0;
Control.5:=0;
Control.6:=0;

Preset value control:

1 Software trigger write;

2 External trigger write. Select the external trigger source among X8, X9, XA, XB (changed to: CnT, where n is the
count channel, 0 =< n <= 3. Each trigger source corresponds to a count channel).

3 Comparison consistent trigger write
Latch control of count (timing) value:

4 Enable the count value latching. Select the external trigger source among X8, X9, XA, XB (changed to: CnT,
where n is the count channel, 0 =< n <= 3. Each trigger source corresponds to a count channel).

Control.9:=0;
Control.10:=0;

Control.11:=0;

Set control parameters for counting function blocks
counterparam[0] .Control:= Control;//Control word
counterparam[0] .TaskPeriodNum:=1;//The number of task cycles between the pulse frequency updates

counterparam[0] .UpValue:=10000000;

-138-

AX series programmable controller software manual Function module command

counterparam[0] .DownValue:=-1000;

counterparam[0] .Ratio:=10000;

Program code example

CounterO (
Enable:= TRUE,
Channel:= 0, //Selectcounter 0. Select a value from [0,7] for other counter.
CounterParameter:=counterparam[0],
Value=> value0O, //Outputcount
Frequency=> fre0, //Output count frequency value
Velocity=> vel0O, //Output count velocity value
Direction=> ,
Break=> ,
Error=> ,
ErrorID=>);

Time sequence description

(1) Forward

CnA
+1 +1 +1
CnB J

(2) Reverse

CnA
-1 -1 -1
CnB T

Figure A-9 Pulse + direction forward input diagram

Figure A-10 Pulse + direction reverse input diagram
Note:

Pulse + direction counting needs to be cumulative or subtractive depending on the direction signal. In forward running, the
counter will increase by one every time a pulse comes, otherwise it will decrease by one. n indicates counting channel, 0
=<n<=7.

A.3.2 LatchValue_HP

To call the latch value reading module, the Counter_HP module should be called to set the parameters of the counter used.
This module selects the trigger signal by selecting CxT, and latches the corresponding value when there is a signal (rising
edge trigger latch). Only signals X8, X9, XA, XB have a trigger function. It is necessary to set the count value latch control
and other parameters in the counter, indicating that Done will not be set to true when the latch value is 0.

Table A-1 Latch_Value

-139-

AX series programmable controller software manual

Function module command

Parameter Type Input/Output type Function
Enable BOOL IN Enable
Number of
Channel BYTE IN
channels[0,3]
Value DINT ouT Latch value
Execution complete
Done BOOL ouT .
sign
Error BOOL ouT Error sign
ErrorlD BYTE ouT Error code
LatchValue_HP
—{Enable Valuef—
—Channel Donef—
Errorf—
ErrarlDF—
Figure A-11 Latch_Value
A.3.2.1 Function configuration
A: Configure Counter_HP function block
See Counter_HP function block description for details.
Special configuration for the latch function is described as follows:
1: Configure the input terminal as latching function.
Example: Configure X8 as the latch triggering port.
in8:=2;
" Application.ing i Ing_Configure HoRs BYTE

2: Configure control parameters for latching enable

Example: Configure to enable latching.
Control.9:=0;
Control.10:=0;

Control.ll:=1;

B: Interrupt configuration (if required)
See probe interrupt instruction for details.

C: Configure LatchValue_HP function block

The channel setting of the function block LatchValue_HP is the same as the channel value of Counter_HP.

Example: Select counter 0 and store the latch value in latchO.

latchValueO (
Enable:= TRUE,

Channel:= 0,

-140-

AX series programmable controller software manual Function module command

Value=> latchO,
Done=> ,
Error=> ,
ErrorID=>);

A.3.2.2 Time sequence description

Cnt[x] ———— Value (n-1) Value n Value m Value (m+1)
CxXT / ya ‘
Lock “\ "Lock Function Enabled!
Function _
LatchValue[x] Enabled Value n S Value m

Figure A-12 Latch function diagram
Note:

x indicates the counting channel, 0 =< x <= 3, Cnt[x] indicates the count value of the xth counting channel, CxT indicates
the latch signal of the xth channel, and LatchValue[x] indicates the latch value of the xth channel. When the trigger signal
of CxT latch arrives (the latch function must be configured correctly), the Cnt[x] count value will be latched to
LatchValue[x]. The upper computer can read the value of LatchValue[x] as needed. LatchValue[x] is a 32-bit signed
number, and the highest bit is the sign bit.

A.3.3 PresetValue_HP

There are three ways to write the counter preset values: software write, external trigger write, and count value comparison
equal write. To call this module, the Counter_HP module should be called to set the parameters of the counter used. Only
the four channels of input counter 0, 1, 2, 3 have parameter preset function. Parameters such as preset value control
should be set in the counter. Note: Done indicates that the preset value has been written into the FPGA, and it must be
enabled in the counter according to the set parameters. Done will not be set to true when the preset value is 0.

Table A-2 Preset_Value

Parameter Type Input/Output type Function
Enable BOOL IN Enable
Number of write
Channel BYTE IN
channels[0,3]
Preset value (start
Value DINT IN
value)
Complete sign, 1:
Done BOOL ouT
Complete
Error BOOL ouT Error sign
ErrorlD BYTE ouT Error code

PresetValue_HP
—Enahle Donep—
—Channel Errorf—
—alue ErrorIDf—

Figure A-13 Preset_Value

-141-

AX series programmable controller software manual Function module command

A.3.3.1 Function configuration
There are three ways to preset values. Select one of them as needed in actual use.
Software trigger write

In this mode, the function block PresetValue_HP enables the preset value writing. The software writing is done by the
upper computer ARM.

A: Configure Counter_HP function block

See Counter_HP function block description for details. Special configuration for the preset value function is
described as follows:

Configure the control parameter to the preset value for software trigger write.
Control.9:=1;
Control.10:=0;
Control.11:=0;
B: Configure PresetValue_HP function block
The channel setting of the function block PresetValue_HP is the same as the channel value of Counter_HP.
Example: Select counter 0 and set the preset value to 10000.
Set ValueO (
Enable:= bPreSetFlag,
Channel:= 0,
Value:= 10000,
Done=> ,
Error=> ,
ErrorID=>);
External trigger write

In this mode, the function block PresetValue_HP is enabled. The preset value is written when there is an external trigger
signal CxT. The rising edge of CxT is valid.

A: Configure Counter_HP function block
See Counter_HP function block description for details.
Special configuration for the external trigger function is described as follows:
1: Configure the input terminal as latching function.
Example: Configure X8 as the latch triggering port.
in8:=2;
i Application.ind " In8_Configure SRS BYTE
2: Configure the control parameter to the preset value for external trigger write.
Control.9:=0;
Control.10:=1;

Control.11:=0;

-142-

AX series programmable controller software manual Function module command

B: Configure PresetValue_HP function block
The channel setting of the function block PresetValue_HP is the same as the channel value of Counter_HP.
Example: Select counter 0 and set the preset value to 10000. Write the preset value when the port is triggered.
Set ValueO (
Enable:= bPreSetFlag,
Channel:= 0,
Value:= 10000,
Done=> ,
Error=> ,
ErrorID=>);
Comparison consistent trigger write

In this mode, the function block PresetValue_HP is enabled. The preset value is written when the function block
CompareSingleValue_HP comparison is consistent.

A: Configure Counter_HP function block

See Counter_HP function block description for details. Special configuration for the comparison consistent trigger
function is described as follows:

Configure the control parameter to the preset value for comparison consistent trigger write.
Control.9:=1;
Control.10:=1;
Control.11:=0;
B: Configure CompareSingleValue_HP function block
See CompareSingleValue_HP function block description for details.
C: Configure PresetValue_HP function block
The channel setting of the function block PresetValue_HP is the same as the channel value of Counter_HP.

Example: Select counter 0 and set the preset value to 10000. Write the preset value when the
CompareSingleValue_HP comparison is consistent.

Set ValueO (

Enable:= bPreSetFlag,
Channel:= 0,

Value:= 10000,

Done=> ,

Error=> ,

ErrorID=>);

A.3.3.2 Time sequence description

(1) Software trigger

-143-

AX series programmable controller software manual Function module command

presetValue[x]
—_— Value (n-1) Value n Value m Value (m+1)
Wr_n / L Preset /u
Preset | Function|
Function_ Enabled |
Enabled ™ AN
Cnt[x] Value n L. b Value m

Figure A-14 Software trigger preset function diagram

Note:

X indicates the counting channel, 0 =< x <= 3. presetValue[x] indicates the preset value of the xth counting channel. Wr_n
indicates the write signal of the upper computer and the low level is valid. Cnt[x] indicates the count value of the xth
channel counter. When the Wr_n low level arrives, the value of presetValue[x] is preset into Cnt[x].

(2) External trigger

presetValue[x]
B Value (n-1) Value n Value m Value (m+1)
Preset ‘:; " Preset Function Enabled|
Function_ <
Cnt[x] Enabled Value n S Value m

Figure A-15 External trigger preset function diagram

Note:

x indicates counting channel, 0 =< x <= 3. presetValue[x] indicates the preset value of the xth counting channle, which is
the Value issued by the CompareSingleValue_HP module. CxT indicates the external preset trigger signal of the xth
channle and the rising edge is valid. Cnt[x] indicates the counter value of the xth channel. When the CXxT rising edge
arrives, the value of presetValue[x] is preset into Cnt[x].

(3) Counts equal trigger

presetValue[x]
—_— Value (n-1) Value n Value m Value (m+1)
cvEQPV[X] /T ﬂ
Preset “1 “Preset Function Enabled |
Function _ ;\
Cnt[x] Enabled Value n b Value m

Figure A-16 Single-value comparison consistent trigger preset function diagram
Note:

X indicates the counting channel, 0 =< x <= 3. presetValue[x] indicates the preset value of the xth counting channel.
cvEqPV[X] indicates the single-value comparison consistent signal of the xth channel and the high level is valid. Cnt[x]
indicates the count value of the xth channel counter. When the cvEqPV[X] high level arrives, the value of presetValue[x] is
preset into Cnt[x]. presetValue[x] is a 32-bit signed number, and the highest bit is the sign bit.

A.3.4 PulsewidthMeasure_HP

This module uses pulse width measurement signal PWCx, and only the input signals X8, X9, XA, XB are valid for the
corresponding functions. The number of channels adopts the low 4-bit enabling channel, with bit O indicating channel 1, bit
1 indicating channel 2, bit 2 indicating channel 3 and bit 3 indicating channel 4. Example: Channel: = 2#00001010
indicates that channels 2 and 4 are enabled.

-144-

AX series programmable controller software manual Function module command

Table A-3 Pulsewidth_Measure

Parameter Type Input/Output type Function
Enable BOOL IN Enable
Channel number (4 low
Channel BYTE IN)]
bits valid)
Pulse width
measurement mode 1
Mode BYTE IN L .
indicates high level and
0 indicates low level
Channel 0 pulse width
ValueO DINT ouT measurement value
(0.01us)
Channel 1 pulse width
Valuel DINT ouT measurement value
(0.01us)
Channel 2 pulse width
Value2 DINT ouT measurement value
(0.01us)
Channel 3 pulse width
Value3 DINT ouT measurement value
(0.01us)
Error BOOL ouT Error sign
ErrorlD BYTE ouT Error code
PulsewidthMeasure_HP
—Enahle Valueld —
— Channel Valuel—
—Mode ValueZ —
Valued —
Errorp—
ErrorIDp—

Figure A-17 Pulsewidth_Measure
A.3.4.1 Function configuration

This function block can call the function block PulsewidthMeasure_HP for pulse width measurement as long as the input
port is configured to pulse width measurement PWC.

Example 1: Perform pulse width measurement on X9. chl_Value is the high level pulse width measurement value.
Input port configuration
in9:=4;
i Application.in i In9_Configure OB BYTE

Function block program

PWMO (
Enable:= TRUE,
Channel:= 2#00000010,

Mode:= 2#00000010, //High level measurement is enabled.

-145-

AX series programmable controller software manual

Function module command

ValueO=> ,
Valuel=> chl Value,
Valuez=>,

Value3=>,

Error=> ,

ErrorID=>);

Example 2: Perform pulse width measurement on X8, X9, XA, XB. chO_Value, chl_Value, ch2_Value, ch3_Value are the
high level pulse width measurement value for 4 ports respectively.

Input port configuration
in8:= in9%:=4;
inA:= inB:=4;

g Application.ingd
"# Application.ing
"$ Application.inA
"# Application.inB
Function block program

PWMO (

Enable:= TRUE,

Channel:= 2#00001111, //4 channels

Mode:= 2#00001111, //The lower 4 bits represent 4 channels.

ValueO=>chO Value ,
Valuel=> chl Value,
Value2=> ch2 Value,
Value3=>ch3 Value ,
Error=> ,
ErrorID=>);

A.3.4.2 Time sequence description

(1) Positive pulse width detection

@ @ @ @

Ind_Configure
In9_Canfigure
InA_Configure
InB_Configure

BYTE
BYTE
BYTE
BYTE

PWC_mode[x]

PWC_en[x]

PWCIx]

Cnt[x] — 0 1 2 3

n-1

pulseWidth[x]

-146-

AX series programmable controller software manual Function module command

(2) Negative pulse width detection

PWC_mode[x]

PWC_en[x]

PWCIx]

Cnt[x] — 0 1 2 3 n-1 n 0 —

pulseWidth[x]

Description of positive and negative pulse width detection:

x indicates to the counting channel, 0=< x <= 3. PWC_mode[x] indicates the detection mode of the xth channel. High level
indicates positive pulse detection, and low level indicates negative pulse. PWC_en[x] indicates the enabling of the xth
channel with hight level valid. PWC[x] indicates the xth channel pulse input signal. Cnt[x] indicates the xth channel pulse
width detection counter. PulseWidth[x] indicates the xth channel pulse width in 0.01us without a sign.

A.3.5 SetComparelnterruptParam_HP

This function block is used to set the comparison interrupt source.

Table A-4 SetComparelnterruptParam

Parameter Type Input/Output type Function
Enable BOOL IN Enable
) Multi-value comparison
MoreOrSingle_Sel BYTE IN)]
interrupt selection
Multi-value comparison
MoreValueCount_Sel BOOL IN)]
interrupt selection
Error BOOL ouT Error sign
ErrorlD BYTE ouT Error code

SetComparelnterruptParam_HP
—Enable Errorp—
—Mare0rSingle_Sel ErrorlDp—
—{MoreValueCount_Sel

Figure A-18 SetComparelnterruptParam
MoreOrSingle_Sel parameter description:

The counter interrupt status output is selected to control one interrupt channel per bit. There are 8 comparison interrupts
in total. The comparison interrupt corresponding to each MoreOrSingle_Sel bit value is described below.

-147-

AX series programmable controller software manual

Function module command

. Corresponding . .
Bit Bit Value 1 Bit Value O
Interrupt
Interruption of the Oth
0 Comparison interrupt | comparison point of the | Counter 0 single-value
0 multi-value comparison | comparison interrupt
counter
Interruption of the first
1 Comparison interrupt | comparison point of the | Counter 1 single-value
1 multi-value comparison | comparison interrupt
counter
Interruption of the
) Comparison interrupt | second comparison | Counter 2 single-value
2 point of the multi-value | comparison interrupt
comparison counter
Interruption of the third
3 Comparison interrupt | comparison point of the | Counter 3 single-value
3 multi-value comparison | comparison interrupt
counter
Interruption of the fourth
4 Comparison interrupt | comparison point of the | Counter 4 single-value
4 multi-value comparison | comparison interrupt
counter
Interruption of the fifth
5 Comparison interrupt | comparison point of the | Counter 5 single-value
5 multi-value comparison | comparison interrupt
counter
Interruption of the sixth
6 Comparison interrupt | comparison point of the | Counter 6 single-value
6 multi-value comparison | comparison interrupt
counter
Interruption of the
; Comparison interrupt | seventh comparison | Counter 7 single-value
7 point of the multi-value | comparison interrupt
comparison counter

MoreValueCount_Sel parameter description:

Select a counting channel for multi-value comparison interrupt. The MoreValueCount_Sel value is described as follows:

MoreValueCount_Sel Value Selected counting channel
0 Counter 0
1 Counter 1
2 Counter 2
3 Counter 3

A.3.5.1 Function configuration

To use this function block, call the CompareMoreValue_HP block. See the CompareMoreValue_HP description for details.

Example: Select counter 3 for a multi-value comparison interrupt and generate interrupts at comparison interrupt 0 and

comparison interrupt 1.

-148-

AX series programmable controller software manual Function module command

interrupt sel:=16#11;//Select multi-value comparison interrupt.
count_sel:=16#3;//Select multi-value comparison interrupt counter.
SetCompareInterruptParam (

Enable:= enableparam,

MoreOrSingle Sel:= interrupt sel,

MoreValueCount Sel:= count sel,

Error=> ,

ErrorID=>);

A.3.6 TimingSampling_HP

Timing sampling is the calculation of the number of pulses acquired in a given time range, which can be a variety of pulse
signals supported by the input channel, including single pulse, CW/CCW, timing, and pulse+direction. To call this module,
the Counter_HP module should be called to set the parameters of the counter used. Please set Enable to false before
modifying the sampling time, otherwise the sampling may be abnormal.

Table A-5 Timing_Sampling

Parameter Type Input/Output type Function
Enable BOOL IN Enable
Number of
Channel BYTE IN
channels[0,7]
SampleEnable BOOL IN Enable sampling
Timeset DWORD IN Set sampling time (us)
Value DINT ouT Sample value
Complete sign 1:
Done BOOL ouT
Complete
Error BOOL ouT Error sign
ErrorlD BYTE ouT Error code
TimingSampling_HP
—Enable Valuep—
—Channel Donef—
— 5ampleEnahle Errorf—
—Timeset ErrorIDf—

Figure A-19 Timing_Sampling
A.3.6.1 Function configuration
A: Configure Counter_HP function block

See Counter_HP function block description for details. There is no need to set special parameters to use the timed
sampling function block.

B: Configure TimingSampling_HP function block
The channel setting of the function block TimingSampling_HP is the same as the channel value of Counter_HP.

Example: Select counter 1, set the sampling time to 20000us, and output the sampling pulse value to
sampleValuel.

-149-

AX series programmable controller software manual

Function module command

Samplingl (
Enable:=
Channel:
SampleEn
Timeset:
Value=>
Done=> ,
Error=>

ErrorID=

TRUE,
=1,
able:=TRUE,
= 20000, /lus

sampleValuel,

’

>)

A.3.6.2 Time sequence description

ki SAMPTime[x]

Pulse[x]

\d

SAMP_en[x]

Cnt[x] —

n-1

0‘1‘2‘0}—

sample[x]

Note:

Figure A-20 Sampling diagram

x indicates the xth counting channel, 0 =< x <= 3. Pulse[x] indicates the input pulse signal of the xth channel, which can be
a variety of pulse signals supported by the input channel, including single pulse, CW/CCW, timing, and pulse+direction.
SAMP_en[x] indicates the enabling of the xth channel with hight level valid. SAMPTime[x] indicates the sampling time of
the xth channel. Sample[x] indicates the number of pulses sampled on the xth channel, which is an unsigned number.

A.3.7 CompareSingleValu

e HP

To call the single-value comparison output module, the Counter_HP module should be called to set the parameters of the
counter used. Enable the rising edge to update parameter. The low level module is invalid. The value of OutChanne

ranges from O to 7.

Table A-6 compare_singlevalue

Parameter Type Input/Output type Function
Enable BOOL IN Enable
Start_Cmp BOOL IN Start comparison
Channel BYTE IN Counting channel [0,7]
outChannel BINT IN Select output Channel
[0,7]
CmpValue DINT IN Set comparison value
Error BOOL ouT Error sign
ErrorlD BYTE ouT Error code

-150-

AX series programmable controller software manual Function module command

ComparesingleValue_HP
—Enahle Errorfp—
—Start_Cmp ErrorIDF—
—Channel
—QutChannel
—{CmpWalue

Figure A-21 compare_singlevalue
A.3.7.1 Function configuration
A: Configure Counter_HP function block

See Counter_HP function block description for details. No special configuration is required for the single-value
comparison function block.

B: Interrupt configuration
See Comparison interrupt instruction fro details.
C: Configure CompareSingleValue_HP function block

The channel setting of the function block CompareSingleValue_HP is the same as the channel value of
Counter_HP.

Example: Select counter 3 and set the comparison value to 10000 and output channel to 0.
Cmp3 (
Enable:= TRUE,
Start Cmp:= bStart,
Channel:= 3, //Counter
OutChannel:= 0, //Outputchannel
CmpValue:= 10000, //Comparison value
Error=> ,
ErrorID=>);

A.3.7.2 Time sequence description

Pulse[x]

pvI] i

Cnt[x] — m1 m m+l | m+2 | m+3 n-1 n n+l | n+2 | n+3 N

CMP_single_en[x]

Cnt[x]CvEqgPVv

Figure A-22 Single-value comparison interrupt timing
Single-value comparison description:

X means counting channel, 0 =< x <= 7. Pulse[x] indicates the input pulse of the xth channel, which can be a variety of

-151-

AX series programmable controller software manual Function module command

pulse signals supported by the input channel, including single pulse, CW/CCW, timing, and pulse+direction. Pv[X]
indicates the comparison value of the xth channel. Cnt[x] indicates the xth channel counter value. CMP_single_en[x]
indicates the enabling of the xth channel single-value comparison. Cnt[x]CvEqPv indicates a single-value comparison
output for channel x. A high level is valid, which indicates that the count value is equal to pv.

The above example illustrates the counting accumulation, which is quite similar to the counting degression. If the count
value is equal to the pv value, the output Cnt[x]CVEqPV is valid.

A.3.8 CompareMoreValue_HP

To call the multi-value comparison output module, the Counter_HP module should be called to set the parameters of the
counter used. The comparison value must be increased or decreased in order, and the corresponding counter is set in
positive or negative direction. The maximum number of comparisons is 8. Enable the rising edge update parameter and
invalidate the low level module.

Table A-7 compare_morevalue

Parameter Type Input/Output type Function
Enable BOOL IN Enable

Start_Cmp BOOL IN Start comparison
Channel BYTE IN Counting channel [0,7]

Number of comparison
values [1,100]
CmpValue POINTER TO DINT IN Set comparison value

Number of equal

CmpValue_Num BYTE IN

CmpEqual_Num BYTE ouT i
comparisons [1,100]
Error BOOL ouT Error sign
ErrorlD BYTE ouT Error code
CompareMoreValue_HP
—Enable CmpEqual_Numf—
—Start_Cmp Errorfp—
—Channel ErrorlDf—
—CmpValue_Num
—CmpValue

Figure A-23 compare_morevalue
A.3.8.1 Function configuration
A: Configure Counter_HP function block

See Counter_HP function block description for details. No special configuration is required for the multi-value
comparison function block.

B: Interrupt configuration (if required)

See Comparison interrupt instruction fro details.
C: Configure SetComparelnterruptParam_HP (if required)

See SetComparelnterruptParam_HP function block description for details.
C: Configure CompareSingleValue_HP function block

The channel setting of the function block CompareMoreValue_HP is the same as the channel value of
Counter_HP.

Example: Select counter 0 and set a comparison value from 1000 to 8000. Up to 8 comparison values can be
added in total. Set the comparison interrupt output channel to 0 and 1.

-152-

AX series programmable controller software manual Function module command

FOR comp num:=0 TO 7 BY 1 DO
cmpvalue [comp num] :=1000+1000*comp num;

END_FOR

interrupt sel:=16#3;

count sel:=16#0;
SetComparelInterruptParam (
Enable:= enableparam,
MoreOrSingle Sel:= interrupt sel,
MoreValueCount Sel:= count sel,
Error=> ,

ErrorID=>);

compValue num:=8;

pcmpvalue:=ADR (cmpvalue [0]) ;//Obtain the address of the comparison value array.

cmpmoreO (
Enable:= benabele,
Start Cmp:= bcmpmore,
Channel:= 0,
CmpValue Num:=compValue num , //Total number of comparison values
CmpValue:= pcmpvalue, //Pointerto the comparison value store address input
CmpEqual Num=> CmpEqual NumO, //Sequence numbers of the equal comparison values
Error=> ,

ErrorID=>);

A.3.8.2 Time sequence description

Pulse[x]

PVIXIly]

Cnt[x] —— m1 m | m+l | m+2 | m+3 n-1 n n+l | n+2 | n+3 I

CMP_more_en[x]

Cnt[x]CVEQPV]y]

Figure A-24 Multi-value comparison interrupt timing

-153-

AX series programmable controller software manual Function module command

Multi-value comparison description:

X means counting channel, 0 =< x <= 3. y indicates the yth comparison output value of the selected counting channel, 0 =<
y <= 7. Pulse[x] indicates the input pulase of the selected xth channel, which can be a variety of pulse signals supported
by the input channel, including single pulse, CW/CCW, timing, and pulse+direction. Pv[x][y] indicates the yth comparison
value of the xth channel. Cnt[x] indicates the xth channel counter value. CMP_more_en indicates the enabling of the
multi-value comparison. Cnt[x]CvEqPV[y] indicates the yth comparison output value for channel x. A high level is valid,
which indicates that the count value is equal to pv.

The above example shows the counting accumulation, which is quite similar to the counting degression. If the count value
is equal to the pv value, the output Cnt[x]CvEqPV[y] is valid.

A.3.9 GetVersion_HP

Table A-8 get_version

Parameter Type Input/Output type Function
Enable BOOL IN Enable
Version STRING ouT Version

GetVersion_HP
—Enable Versionf—

Figure A-25 get_version
A.3.10 Zphase_Clearpulse_HP

The counting channel Z signal clearing function clears the counter value when the high-speed counter detects the Z signal
of the counting channel. In actual use, the input signal needs to be configured as the Z signal function, and the input ports
X4, X5, X6, and X7 supports the Z signal function. Enable enables the rising edge to update axis. The low level module is
invalid.

If clearing and compensation are active at the same time, the clearing function take precedence as its priority is higher.

Table A-9 Zphase_Clearpulse

Parameter Type Input/Output type Function
Enable BOOL IN Enable
. Enable Z phase clear pulse
bEnableAxisO BOOL IN
for channel 0
) Enable Z phase clear pulse
bEnableAxisl BOOL IN
for channel 1
) Enable Z phase clear pulse
bEnableAxis2 BOOL IN
for channel 2
. Enable Z phase clear pulse
bEnableAxis3 BOOL IN
for channel 3
Error BOOL ouT Error sign
ErrorlD BYTE ouT Error code
Zphase_Clearpulse_HP
—Enable Errorf—
— bEnablefsxiz0 ErrorlDf—
—bEnablefxis1
—{bEnablefxis2
— bEnablefxis3

Figure A-26 Zphase_Clearpulse

-154-

AX series programmable controller software manual Function module command

A.3.10.1 Function configuration
A: Configure Counter_HP function block
See Counter_HP function block description for details.
There is special configuration for the counting channel Z signal clearing function.
1: Configure the input terminal as Z signal function.
Example: Configure X4 as Z signal function.
ind:=2;

i Application.ing i In4_Configure BLoRE BYTE

B: Configure Zphase_Clearpulse_HP function block
Example: Use counter channel 0 and counter channel 1 with Z-phase clearing function.
Zphase Clearpulse FB(
Enable:= TRUE,

bEnableAxisO:

TRUE ,

bEnableAxisl:

TRUE ,
bEnableAxis2:= ,
bEnableAxis3:= ,
Error=> ,

ErrorID=>);

A.3.10.2 Time sequence description

A A [J i j A [J
CnA v \i \ v v v \ Y

Iy Iy fy 4
CnB
\i Y A \i Y Y \i

Cnz

Z_clean_enable[n]

Cntln] —— m1| o 1 2 3 - nl | n 0 1 2 3 —

Figure A-27 Clearing function timing diagram
Note:

n indicates the nth channel, 0 =< n <= 3. Z_clean_enable[n] indicates the Z clearing function enabling of the nth channel
with high level valid. Cnt[n] indicates the nth channel counter value. The above example illustrates the forward counting
mode, which is quite similar to the reversed counting mode. The reversed counting is started after the Z signal clearing.

A.3.11 Zphase_Compensate_HP

The counting channel Z signal compensation function compensates the counter value according to the counter resolution
parameter Ratio when the high-speed counter detects the Z signal of the counting channel. In actual use, the input signal
needs to be configured as the Z signal function, and the input ports X4, X5, X6, and X7 supports the Z signal function.

-155-

AX series programmable controller software manual Function module command

Enable enables the rising edge to update axis. The low level module is invalid. If clearing and compensation are active at
the same time, the clearing function take precedence as its priority is higher. After power-on, the compensation function
requires at least one count value change to take effect. Otherwise the compensation will not work.

Table A-10 Zphase_Clearpulse

Parameter Type Input/Output type Function
Enable BOOL IN Enable
) Enable Z phase pulse
bEnableAxisO BOOL IN]
compensation for channel O
) Enable Z phase pulse
bEnableAxis1 BOOL IN .
compensation for channel 1
) Enable Z phase pulse
bEnableAxis2 BOOL IN .
compensation for channel 2
. Enable Z phase pulse
bEnableAxis3 BOOL IN]
compensation for channel 3
Error BOOL ouT Error sign
ErrorlD BYTE ouT Error code
Zphase_Compensate_HP
—Enable Errorf—
—bEnablefsxis0 ErrorlDf—
—{bEnablefxis1
—bEnablefxis2
—bEnablefsxiz3

Figure A-28 Zphase_Compensate
A.3.11.1 Function configuration
A: Configure Counter_HP function block
See Counter_HP function block description for details.
There is special configuration for the counting channel Z signal compensation function.
1: Configure the input terminal as Z signal function.
Example: Configure X4 as Z signal function.
ind:=2;

i Application.in4 i In4_Configure] BYTE

B: Configure Zphase_Compensate_HP function block
Example: Use counter channel 0 and counter channel 1 with Z-phase compensation function.

Zphase Compensate FB(
Enable:= TRUE,
bEnableAxis0:= TRUE,
bEnableAxisl:=TRUE ,
bEnableAxis2:= ,
bEnableAxis3:= ,
Error=> ,
ErrorID=>);

-156-

AX series programmable controller software manual Function module command

A.3.11.2 Time sequence description

i \ i i JA
CnA Y v v v Y Y
A A A [A A [
CnB
Y v Y Y v \ Y

Cnz

Z_comp_enable[
nj

m+rati | m+rati | m+rati | m+rati
Cnt[n] — 1 m1 m m+l | m+2 | m+3 n-1 n on | ont1 | ont2 | on+3

Figure A-29 Compensation function timing diagram

Note:

n indicates the nth channel, 0 =< n <= 3. Z_comp_enable[n] indicates the Z compensation function enabling of the nth
channel with high level valid. Cnt[n] indicates the nth channel counter value. The above example illustrates the forward
counting compensation, which is quite similar to the reversed counting compensation. After the Z signal arrives, the
system executes the reverse compensation (minus ration) and then the reversed counting.

-157-

AX series programmable controller software manual Project Instance

Appendix B Project Instance

B.1 Controller and Goodrive20 Series VFD Configuration Example

The AX Series controller is now set up as the master and a Goodrive 20 Series VFD is set up as the slave. The controller
uses the Modbus /RTU communication protocol with a two-wire RS485 physical layer and communicates with the VFD via
the COM2 port. Let’s write a small program that reads and writes the functional parameters of the Goodrive20 VFD with
the upper computer.

Select File > New Project from the menu to create a new standard project. Set the device to INVT AX7x, and select
Structured Text (ST) as the programming language. Edit the project information as needed, as shown in the following
figure.

| -] New Project X

Categories Templates

e B B @ A

Empty project HMI project Standard Standard
project project w...

A project containing one device, one application, and an empty implementation for PLC_PRG

Name ‘Goodnvezol
Location b:\InvtmancSmdlo\ProJect o [
.
Standard Project X

You are about to create a new standard project. This wizard will create the following
| I objects within this project:
'E

- One programmable device as specified below

- A program PLC_PRG in the language specified below

- A cyclic task which calls PLC_PRG

- A reference to the newest version of the Standard library currently installed.

Device INVT AX7X (Shenzhen INVT Electric Co., Ltd.) v

PLC_PRG in | Structured Text (ST) e

-158-

AX series programmable controller software manual

Project Instance

Project Information

Fle Summary pProperties Statistics Licensing Signing

Company vt |
Title |RTU mode Goodrive20 Communication]
Version |1,o,o,o ‘ [] Released
Library Categories ’ ‘ [
Default namespace |]
Author |sz]
Description RTU mode Goodrive20 Communication

Library compatibility _Irwmticsttﬁo\?l.ﬂ.z

The fields in bold letters are used to identify alibrary.

[[] Automatically generate 'Library Information' POUs

[[] Automatically generate Project Information’ POUs

o][cane

Select Tool > Library Repository from the menu, and install the library file CmpModbusRTU_Master2_1.0.0.3.library,

as shown in the following figure.

i) Library Repository

Location System ~ Edit Locations...
(C:\ProgramData\Invtmatic Studio\Managed Libraries)
Installed libraries: Install...
Compan INVT
S| Uninstall
= 3¢ (Miscellaneous) r—
+ (M cmpHsio_c wr
+. (M cmpHsIo_M T
+ [cmpModbusRTU Mastert 77T
= (@ cmpModbusRTU_ Master2 W7
[003
+ [cmpModbusTCP Master 77T Find...
*- (I cmpModbusTCP Save 7WT E—
+ ’ CmpModbus_RTU_Savel 7T
+ . FranMadkoae DT Qaua) mAT TrUSt Ceﬂ]ﬁcatE
[~] Group by category Dependendes...
Library Profiles... Close

Select Library Manager > Add Library to add the installed library to the application, as shown in the following figure.

-159-

AX series programmable controller software manual Project Instance

i) Library Manager x| [Z] PLC_PRG
[E3 Add Library X Delete Library % Properties 79 Details ' 5] Placeholders [fiff Library Repository @ Icon legend...

Name Namespace Effective version

-] 3s0

35_LICENSE 3.5.14.0

5.5.0

BPLog

TU_Master2, 1.0.0.3 (W) | | cmpModbusRTU_Master2 1.0.0.3
ndard, 3.5.15.

IoStandard =

Cmy

[T

ToStandard 3.5.15.0

a TRAFO 4,5.1.0
Standard = Standard, 3.5.15.0 (System) Standard 3.5.15.0

mEEEEEE

=3 OmpModbusRTU Master2, 1.0.0.3 (INVT) -
ModbusRTU_Master_Fun_COM2
[E] ModbusrTU_Master_init_com2

Double-click the PLC_PRG and enter the following codes on the statement editor:
PROGRAM PLC PRG
VAR
ModbusRTU Master Fun COM2: ModbusRTU Master Fun COM2;
ModbusRTU Master Init COM2: ModbusRTU Master Init COM2;
DatePtr2:ARRAY[0..0]OF INT;
input registers Ptr2:ARRAY[0..9]OF INT;
CoilDataPtr2:ARRAY[0..9]0F BOOL;
input bits Ptr2:ARRAY[0..9]0F BOOL;
CoilSingleData2:INT;
Fun Code2:INT;
Addr2:UINT;
DataCount2 : UINT: =1;
END VAR
Enter the following code in the main code editor:
ModbusRTU Master Init COM2 (
Execute2:= 1,
Baud2:= 19200,
Databits2:= 8,
Stopbits2:=1 ,

Parity2:=2 ,

Timeout2:= 1000,
bDone2=> ,

Error2=> ,

-160-

AX series programmable controller software manual Project Instance

ErrorID2=>);
ModbusRTU Master Fun COM2 (

xExecute2:= 1,

Fun Code2:= Fun Code2,

Addr2:= Addr2,

Slave2:= 1,

DataCount2:= DataCount2,

CoilDataPtr2:=ADR(CoilDataPtr2) ,

CoilSingleData2:= CoilSingleDataZz,

input bits Ptr2:= ADR(input bits Ptr2),

input registers Ptr2:=ADR(input registers Ptr2) ,

DataPtr2:=ADR (DatePtr2),

Done2=> ,

Error2=> ,

ErrorID2=>);

Here are some descriptions of the program. The program calls two function blocks of the CmpModbusRTU_Master2
library, ModbusRTU_Master_Init_ COM2 and ModbusRTU_Master_Fun_COM2. ModbusRTU_Master_Init_ COM2 is used
to initialize the RTU Master2, where the baud rate is set to 19200, the data bit is 8, the stop bit is 1, the check bit is even
check, and the timeout time is 1000ms. ModbusRTU_Master_Fun_COM2 is the enablement and specific application of
the function module. The variable Fun_Code2 is the standard Modbus function code, Addr2 is the address of the VFD
Goodrive20 function. For the address of other MODBUS functions, refer to the INVT Goodrive20 Series VFD product
manual. Slave?2 indicates the VFD slave address, which is set to 1 here.

Connect the VFD and the controller with the two-wire RS485, and then start the VFD. Set the function code P00.01 to 2
through the VFD keypad, so that the running command can be controlled by the upper computer through communication
modes. Set P00.06 to 8 to select the MODBUS communication mode. Set the serial communication parameters of group
P14 to make it consistent with the initial parameter settings of the upper computer, including baud rate, data bit, parity bit,
slave address, timeout time.

Click the button on the toolbar to compile the code. After compiling, click the ’5 button on the toolbar to log in
to the controller. Check that the controller digital tube has no error, the VFD Goodrive20 is connected to the controller
smoothly, and the communication is normal. The upper computer interface is shown in the figure.

-161-

AX series programmable controller software manual

Project Instance

) .ﬂ Library Manager IEJ PLC_PRG X LTj Device

Device Application.PLC_PRG

Expression Type Value Prepared value Address Comment E
+ & ModbusRTU_Master_Fun_COM2 ModbusRTU_Master_Fun_COM2 D
& ModbusRTU_Master_Init_COM2 ModbusRTU_Master_Init_COM2
* @ DatePtr2 ARRAY [0..0] OF INT
+ & input_registers_Ptr2 ARRAY [0..9] OF INT
@ CoilDataPtr2 ARRAY [0..5] OF BOOL
+ @ input_bits_Ptr2 ARRAY [0..9] OF BOOL
CoilSingleData2 INT 0
& Fun_Code2 INT 0
@ Addr2 UINT 0
& DataCount2 UINT 1
< >
- B
=] 1 ModbusRTU_Master_Init_COM2(
z Exscute2lGEIEN:= 1,
3 Baud2[ea0 ;= 19200,
4 Databits2[8 J:= 2,
5 Stopbits2[1] '
© r
7 Timeout2[w000 ;= 1000,
8 bDone2=> ,
5 Error2=> ,
10 ErrorID2=>):
8 11 ModbusRTU_Master_Fun_ COM2 (
12 xExecutc2fENE:= 1,
13 Fun_Code2[@ |:= Fun_Code2[0],
14 Addr2[[@ |:= Addr2[[0],
15 Slave2[1 J:= 1,
1€ DataCount2[1 |:= DataCount2[1 |,
17 CoilDataPt rafi000020ES7E00RE+ADR (CoilDataPtr2) ,
18 CoilSingleData2[0 |:= CoilSingleData2_ 0 |,
13 input_bits_Pt 0000205760008 ADR (input_bits_Ptr2),
B 20 input_registers_Prra 2ADR (input_registers_Ptr2) ,
21 DataPt raf0000020E57E009€2ADR (DatePrr2) ,
22 Done2=> ,
Error2=> ,
ErrorID2=>);
[RETURN

Now we take an example of the read operation. Write the value to the variable in the login state. Write 3 to the Fun_Code,
which means 03H function code Read Holding Registers. Write 16#3002 to the Addr, which means that one address is
read from 3002H. The value 3335 can be read from the array DataPtr2 (i.e. 3002H address), which means the bus voltage
is 333.5V with reference to the VFD product manual. Similarly, write 3 to the Fun_Code, which means 03H function code
Read Holding Registers. Writet 16#2100 to the Addr. The value 3 can be read from the array DataPtr2 (i.e. 2100H
address), which means the VFD is down with reference to the VFD product manual.

.+@

Mo d'E‘E sRTU_Master_Fun CO...

ModbusRTU_Master... B8
+ @ ModbusRTU_Master_Init CO ModbusRTU_Master... =
= @ DatePtr2 ARRAY [0..0] OF INT
@ DatePtr2[0] INT 3335
+ @ input_registers_Ptr2 ARRAY [0..9] OF INT
+ @ CoilDataPtr2 ARRAY [0..9] OF BO...
+ @ input_bits_Ptr2 ARRAY [0..9] OF BO...
e i m - - —
9 ErroriZ=» , o
10 ErrorlDz=> j:
= 11 ModbusRTU_Master Fun COM2({
1z xExecute2[IEIEN:= 1,
13 Fun_Code2[3 = Fun Code2[3], I
14 Rddr2[72250 | L
15 i
15 DataCount2[1 |:= DataCount2[1 |,
17 CoilDataPtr2[16#860AE5A8 |:=ADR (CoilDataPtr2) ,
18 CoilSingleData2[0 |:= CoilSingleData?l 0]
13 input_bits_Ptr2[162B50AESE? = ADR(input_bits_Ptr2), ’—I@
L 3 3 T AT £S5 3 T iy 100 % i

-162-

AX series programmable controller software manual

Project Instance

+ % ModbusRTU_Master_Fun_CO... ModbusRTU_Master...

+ @ ModbusRTU_Master_Init_CO ModbusRTU_Master. ..

= & DatePtr2 ARRAY [0..0] OF INT

@ DatePtr2[0] INT 3
input_registers_Pti2 ARRAY [0..9] OF INT
CoilDataPtr2 ARRAY [0..9] OF BO...
input_bits_Ptr2 ARRAY [0..9] OF BO...

T
oW B W

|

m

9 Errori=» ,
10 ErrorID2=>);
= 11 ModbusRTU Master Fun COM2(
1z xExecuce [IENEN:= 1,
13 Fun_Code2[2 |:= Fun Codel[2 |,
14 Rddr2[84 |:=Addr2[843 |,
15 Slave2[1 J:= 1,
16 DataCount2[1 |:= DataCount2[1 |,
17 CoilDataPtr2[16#860AESAE |: =ADR (CoilDataPtr2) ,
18 CoilSingleData2[0 |:= CoilSingleData2[_ 0 |,
] input_bits_Ptr2[J6SBE0AESEZ |:=

PR Y

ADR (input_bits_Ptr2),

P AT L4 mamaas_mmerd s mona T

m

100 % | ~

Now we take an example of the write operation. Write the value to the variable in the login state. Write 6 to the Fun_Code,
which means 06H function code Write Single Register. Write 16#0003 to the Addr, which means to write a value to the
address 0003H. Referring to the VFD product manual, 0003H is the address of the maximum output frequency of the VFD
with a default value of 50.00 HZ. Before writing the value of the address, the value of the address 0003H in the upper
computer is 5000 which is obtained by 50.00Hz multiplied by the scale value of 100. If the maximum output frequency of
the VFD is set to 100Hz, write the 0003H with value 100Hz*100, that is, 10000. After that, the value of P00.03 will change

from 50.00 to 100.00, indicating that the controller wrote successfully to the VFD. See the figure.

+ @ ModbusRTU_Master_Fun_CO... ModbusRTU_Master...
+ #§ ModbusRTU_Master_Init CO... ModbusRTU_Master...
= @ DatePtr2 ARRAY [0..0] OF INT
@ DatePtra[0] INT 5000
input_registers_Ptr2 ARRAY [0..9] OF INT

input_hits_Ptr2 ARRAY [0..9] OF BO...

L4
+ @ CoilDataPtr2 ARRAY [0..9] OF BO...
L4

[

m

9 Error2=r ,
10 ErrorID2=>);
= 11 ModbusRTU Master Fun COM2(
12 xExecute2|if 1,
13 Fun_Code2[& |:= Fun Code2[& |,
14 Rddr2[3 |=Rddr2[3 |,
15 Slavez[1 = 1,
16 DataCount2[_ 1 |:= DataCount2[1],
17 CoilDataPrra[16sEe0AEsAE |:=ADR (CoilDataPtrd) ,
18 CoilSingleData?[0 |:= CoilJingleDataz[@ |,
] input_bits_Prr2[16BE0AESEZ |:=

PR PPN, P! s e r ey

+ # ModbusRTU_Master_Fun_CO.. ModbusRTU_Master...

¥
&

ModbusRTU_Master_Int_CO... ModbusRTU_Master. ..

- & DatePtr2 ARRAY [0..0] OF INT

@ DatePtr2[0] INT 10000
input_registers_Ptr2 ARRAY [0..9] OF INT
CoilDataFtr2 ARRAY [0..9] OF BO...
input_bits_Ptr2 ARRAY [0..9] OF BO...

T
o B W

ADR (input_bits Ptrlj,

P T % W PR PR I 1Y

m

100 % | -

il

m

9 Errori=» ,
10 ErroriDi=>);
= 11 ModbusRTU Master Fun COM2(
1z xExecute |iENEN:= 1,
13 Fun_CodeZ[& |:= Fun Code2[& |,
14 Addr2[3 |:=Rddra 3],
15 Slave2[1 = 1,
1€ DataCount2[1 |:= DataCountZ[1],
17 CoilDataPtr2[162880AEBA8 |:=ADR(CoilDataPtrl) ,
18 CoiljingleData2[@ |:= CoilSingleDatazl o |
9 input_bits_Ptr2[168860AESES |:

Tl ATT L4 mmans wmerd ok mana Tl

-163-

m

100 % |fEh -

AX series programmable controller software manual Project Instance

B.2 Controller and DA200 Series Servo Drive Configuration Example

In this section, we will write a program to control four DA200 series servo drives to drive four motor axes for constant
forward and reverse motion.

Select File > New Project from the menu to create a new standard project. Set the device to INVT AX7x, and select
Structured Text (ST) as the programming language. Edit the project information as needed, as shown in the following
figure.

-] New Project X

Categories Templates

o Pt g 5 &5 2

Empty project HMI project Standard Standard
project project w...

A project containing one device, one application, and an empty implementation for PLC_PRG ‘

Name GA200]
Location 'D:\Invvnauc Studio\Project v]
==
Standard Project x

You are about to create a new standard project. This wizard will create the following
= objects within this project:

'E

- One programmable device as specified below

- A program PLC_PRG inthe language specified below

- A cyclic task which calls PLC_PRG

- A reference to the newest version of the Standard library currently installed.

Device INVT AXTX (Shenzhen INVT Electric Co., Ltd.) ~

PLC_PRG in | Structured Text (ST) ~

Conce

-164-

AX series programmable controller software manual Project Instance

Project Information X

File Summary Properties Statistics Licensing Signing

Company [INVT J
Title l DA200 Control 4 motor axis l
Version [10.00 | O released

Library Categories [‘

Default namespace l J

Author IZJZ l
Description DA200 Control 4 motor axis
Library compatibility |Invtmatic Studio V1.0.2 v

The fields in bold letters are used to identify alibrary.

[[] Automatically generate ‘Library Information' POUs
[[] Automatically generate ‘Project Information’ POUs

o][conce

Right click the device from the device panel and select Add Device to add the EtherCAT master. Select EtherCAT Master
SoftMotion with a version of 3.5.15.0, as shown in the following figure.

ﬂi Add Device =

Name |Eﬁ1erCAT_Masber_SoFH‘~40ﬁon

Action

(@) Append device Insert device Flug device (O) Update device

|51Iing for a fulltext search | Vendor | <all vendors> o
Name Vendor Version Description K

E2 m Miscellaneous

=i m Fieldbuses

€AN CANbus

= polh EtherCAT

= Dﬁ Master

m EtherCAT Master 35 - Smart Software Solutions GmbH 3.5.15.0 EtherCAT Master...
m |Eﬂ’1erC.&T Master SoftMotion 35 - Smart Software Solutions GmbH 3.5.15.0 EtherCAT Master SoftMotion. ..

+-- E§ Ethernet Adapter

+ - = EtherMet/IP

& ﬁ Home&Building Automation

+- Kt Modbus

+

m Name: EtherCAT Master SoftMotion
Vendor: 35 - Smart Software Solutions GmbH
Categories: Master -
Version: 2.5.15.0 ﬁ
Order Number: =
Description: EtherCAT Master SoftMotion...

Append selected device as last child of
Device

€ (You can select another target node inthe navigator while this window is open.)

Add Device Close

Right click the device EtherCAT Master SoftMotion from the device panel and select Add Device to add 4 servo drives.
Select INVT_DA200_171, as shown in the following figure.

-165-

AX series programmable controller software manual

Project Instance

[Add Device

Name ‘IN\I’T_DAZUU_ZSZ

Action
(® Append device () Insert device (O) Update device
|5h’\ng for a fulltext search | Vendor | <Al vendors>
Name Vendor
= m Fieldbuses
=i b EtherCAT
= D;ﬁslave

+-|_J Delta Electronics, Inc. - Servo Drives
+- [ifm electronic - ifm electronic EtherCAT Devices
- L INVT
= INVT INDUSTRIAL
=1 Servo Drives

+-- [Panasonic Corporation, Appliances Company - AC Servo Driver

. P Rarlene Uarmifim Mearlene Carce Fieis 180

<

m |DA200-N EtherCAT(CoE) Drive INVT INDUSTRIAL

Group by category [] Display all versions (for experts anly) [] Display outdated versions

Vendor: INVT INDUSTRIAL

Categories: Slave

Version: Revision= 1600000048

Order Humber: INVT_DA200_262

Description: EtherCAT Slave imported from Slave XML: INVT_DA200_EtherCAT_V262_200313.xml Device:
DA200-M EtherCAT(CoE) Drive

[mame:DA200-N EtherCAT(CoE) Drive "

=

Append selected device as last child of
EtherCAT_Master_SoftMotion

€ (You can select another target node inthe navigator while this window is open.)

Close

Right click an INVT_DA200_171 device in the device panel and select Add SoftMotion CiA402 Axis. Preform the same

procedure for the remaining 3 INVT_DA200_171 devices, as shown in the figure.

Devices

* 0 X

=5 pAZo0
=[] Device (INVT AX7X)
=2 PLC Logic
= ':j Application

m Library Manager
PLC_PRG (PRG)

H @ Task Configuration
=58 EtherCAT Task

& PLC_PRG

Eiﬁ Trace

% HIiGH PLULSE IO

E m EtherCAT_Master_SoftMotion (EtherCAT Master SoftMotion)
= [™WT_DAZ00_171 (DA200-M EtherCAT(CoE) Drive)

H&P 5M_Drive_GenericDSP402 (SM_Drive_GenericDSP402)
=[] ™WT_DAZ00_171_1 (DA200-N EtherCAT(CoE) Drive)

H&P 5M_Drive_GenericDSP402_1 (SM_Drive_GenericDSP402)
=[] ™T_DAZ00_171_2 (DA200-N EtherCAT(CoE) Drive)

&P 5M_Drive_GenericDSP402_2 (SM_Drive_GenericD5P402)
= [l ™VT_DA200_171_3 (DA200-N EtherCAT(CoE) Drive)

3P 5M_Drive_GenericDSP402_3 (SM_Drive_GenericDSP402)

1. SoftMotion General Axis Pool

Double-click the PLC_PRG and enter the following codes on the statement editor:

PROGRAM PLC PRG

-166-

AX series programmable controller software manual Project Instance

VAR
istatus: INT;
MC Power 0: MC_ Power;
MC Power 1: MC Power;
MC Power 2: MC Power;
MC Power 3: MC_ Power;
MC MoveAbsolute 0: MC MoveAbsolute;
MC MoveAbsolute 1: MC MoveAbsolute;
MC MoveAbsolute 2: MC MoveAbsolute;
MC MoveAbsolute 3: MC MoveAbsolute;
END_ VAR
Enter the following code in the main code editor:

CASE iStatus OF

MC Power 0 (Axis:= SM Drive GenericDSP402, Enable:= TRUE, bRegulatorOn:= TRUE,
bDriveStart:=TRUE ,);

MC Power 1(Axis:= SM Drive GenericDSP402 1, Enable:= TRUE, bRegulatorOn:= TRUE,
bDriveStart:=TRUE ,);

MC Power 2 (Axis:= SM Drive GenericDSP402 2, Enable:= TRUE, bRegulatorOn:= TRUE,
bDriveStart:=TRUE ,);

MC Power 3 (Axis:= SM Drive GenericDSP402 3, Enable:= TRUE, bRegulatorOn:= TRUE,
bDriveStart:=TRUE ,);

IF MC Power 0O.Status AND MC Power 1l.Status AND MC Power 2.Status AND MC Power 3.Status
THEN

iStatus:=iStatus+l;

END_IF

MC MoveAbsolute 0 (Axis:=SM Drive GenericDSP402 , Execute:=TRUE, Position:=50, Velocity:=3,

Acceleration:= 2, Deceleration:= 100,);

MC MoveAbsolute 1 (Axis:=SM Drive GenericDSP402 1, Execute:= TRUE, Position:=50 ,
Velocity:=3 , Acceleration:= 2, Deceleration:=100,);
MC MoveAbsolute 2 (Axis:=SM Drive GenericDSP402 2, Execute:= TRUE, Position:=50 ,
Velocity:=3 , Acceleration:= 2, Deceleration:=100,);
MC MoveAbsolute 3 (Axis:=SM Drive GenericDSP402_ 3, Execute:= TRUE, Position:=50 '
Velocity:=3 , Acceleration:= 2, Deceleration:=100,);

IF MC MoveAbsolute 0.Done AND MC MoveAbsolute 1.Done AND MC MoveAbsolute 2.Done AND
MC MoveAbsolute 3.Done THEN

MC MoveAbsolute 0 (Axis:=SM Drive GenericDSP402 , Execute:= FALSE,);

-167-

AX series programmable controller software manual Project Instance

MC MoveAbsolute 1 (Axis:=SM Drive GenericDSP402 1 , Execute:= FALSE,);
MC MoveAbsolute 2 (Axis:=SM Drive GenericDSP402 2 , Execute:= FALSE,);
MC MoveAbsolute 3 (Axis:=SM Drive GenericDSP402 3 , Execute:= FALSE,);
iStatus:=iStatus+1;

END IF

MC MoveAbsolute 0 (Axis:=SM Drive GenericDSP402 , Execute:= TRUE, Position:=0 , Velocity:=3,

Acceleration:= 2, Deceleration:= 100,);

MC MoveAbsolute 1 (Axis:=SM Drive GenericDSP402 1, Execute:= TRUE, Position:=0, Velocity:=3,

Acceleration:= 2, Deceleration:=100,);

MC MoveAbsolute 2 (Axis:=SM Drive GenericDSP402 2, Execute:= TRUE, Position:=0, Velocity:=3,

Acceleration:= 2, Deceleration:=100,);

MC MoveAbsolute 3 (Axis:=SM Drive GenericDSP402 3, Execute:= TRUE, Position:=0, Velocity:=3,

Acceleration:= 2, Deceleration:=100,);

IF MC MoveAbsolute 0.Done AND MC MoveAbsolute 1.Done AND MC MoveAbsolute 2.Done AND
MC MoveAbsolute 3.Done THEN

MC MoveAbsolute 0 (Axis:=SM Drive GenericDSP402 , Execute:= FALSE,);
MC MoveAbsolute 1(Axis:=SM Drive GenericDSP402 1 , Execute:= FALSE,);
MC MoveAbsolute 2 (Axis:=SM Drive GenericDSP402 2 , Execute:= FALSE,);
MC MoveAbsolute 3 (Axis:=SM Drive GenericDSP402 3 , Execute:= FALSE,);

iStatus:=1;

END IF

END_CASE

The main body of the program takes the form of a state machine that determines which part of the code to execute
through the value of iStatus. When the program starts, the iStatus value is 0 and the program initializes the MC_Power
function block and enables the corresponding motor shaft. If the enabling is successful, the iStatus value is 1 and the
program enters the next state. When the iStatus value is 1, the MC_MoveAbsolute function block is executed, and the
motor rotates to the specified position at the specified speed. If the motor moves normally to the specified position, the
iStatus value is increased by 1, and the motor enters the next state. When the iStatus value is 2, execute the
MC_MoveAbsolute function block in the other direction. The motor continues to rotate to the specified position at the
speed specified by the function block. If the motor moves normally to the specified position, the iStatus value is reset to 1.
The procedure is executed repeatedly to implement the forward and reverse movement of the motor.

Double-click EtherCAT Master SoftMotion from the device panel and click Browse to select the EtherCAT
communication network eth0. Select the distributed clock as needed. In this example, select 4000us for the cycle time.
See the figure.

-168-

AX series programmable controller software manual Project Instance

& EtherCAT Task ns SM_Drive_GenericDSP402 PLC_PRG [EtherCAT_Master_SoftMotion X -
General [Autoconfig Master/Slaves EthercA”T-‘_g
Sync Unit Assignment EtherCAT NIC Satting
Log Destination address (MAC) |FF-FF-FF-FF-FFFF Broadcast [] Enable redundancy
Source address (MAC) BO-7E-11-3D-81-5C Browse... I
EtherCAT I/O Mapping
Network Name
EtherCAT IEC Objects (®) Select network by MAC (0) Select netwaork by name
Status Distributed Clock Options
Information Cycle time 4000 2 ps
Sync offset 20 = %

D Sync window monitoring

i
=
F

Sync window 1

Click the button on the toolbar to compile the code. After compiling, click the "5 button on the toolbar to log in
to the controller. The servo starts normally, the motor runs smoothly, and the upper computer interface is shown in the
following figure.

Devices * o X
=5 DA209 -
= ﬁ Device [connected] (INVT AX7X)
=80 rLc Logic

=} Application [run]
m Library Manager
PLC_PRG (PRG)
= @ Task Configuration
=43 2 EtherCAT Task
& PLC_PRG
@.ﬁ Trace
"3 HIGH_PULSE_IO
= m EtherCAT_Master_SoftMotion (EtherCAT Master SoftMotion)
=3 [{] mvT_DA200_171 (DA200-N EtherCAT(CoE) Drive)
H#P 5M_Drive_GenericDSP402 (SM_Drive_GenericDSP402)
=3 [VT_DA200_171_1 (DA200-N EtherCAT(CoE) Drive)
H#P 5M_Drive_GenericDSP402_1 (SM_Drive_GenericDSP402)
=3 [INVT_DA200_171_2 (DA200-N EtherCAT(CoE) Drive)
H4P SM_Drive_GenericDSP402_2 (SM_Drive_GenericDSP402)
=43 [INVT_DA200_171_3 (DA200-N EtherCAT(CoE) Drive)
W@ SM_Drive_GenericDSP402_3 (SM_Drive_GenericDSP402)
" SoftMotion General Axis Poal

-169-

AX series programmable controller software manual

Project Instance

5 EtherCAT Task [# SM_Drive_GenericDSP402 V[5] PLC_PRG x [[{] EtherCAT Master_SoftMotion] -
Device Application.PLC_PRG
Expression Type Value Prepared value Address Comment ~
@ iStatus INT 1 [}
* @ MC_Power_0 MC_Power
® @ MC_Power_l MC_Power
* @ MC_Power_2 MC_Power
* @ MC_Power_3 MC_Power
+ § MC_MoveAbsoluts D MC_MoveAbsolute
v
< >
1|© CASE iStatus _1i__| OF ~
2| & MC_Power_0{Axis:= SM_Drive_GenericDSP402, Enable[ENEl:= TRUE, bRegulatorOn]
4| MC_Power 1(Axis:= SM Drive GenericDSE402 1, Enablel TRUE, bRegulatorOn) TRUE, bDriveStart| A
s|© MC_Power_2(Awis:= SM_Drive_GenericDSP402_2, Enzblel TRUE, bRegulatorOn| TRUE, bDriveStart| A
MC Powsr 3(Axis:= SM Drive GenericDSP402_3, Ensblel TRUE, bRegulatorOn) TRUE, bDriveStart| A
1=} IF MC_Power_0.Statusl AND MC_Power_l.Statusli AND MC_Power_2.Status AND MC_Power_3.Status
iStatus[T J=iStatus T Ji:
END_IF
1:
11| % MC_MoveRbsolute_0 (Axis:=SM Drive_GenericDSP402 , Execute TRUE, Position 80 J:=50 , Velocity[3 =3 , Acceleration 2 |:= 2, Dece
12 MC_MoveRbsolute 1 (Rxi ¥ _Drive GenericDSP402_1, Executel TRUE, Position[50 | , Velocity 3 | , Bcceleration 2 |
13| MC MoveRbsolute 2(Axis:=SM Drive GenericD3P402 2, Executcl TRUE, Position[50| , Velocityl 3 =3 , Acceleration 2 |
14 MC_MoveRbsolute 3 (Rxis:=SM Drive GenericDSP402_3, Executcfil TRUE, 0, Velocity{ 8 =3 , Boceleration[2 s
B 15|¢ IF MC Movedbsolute 0.Done[ENEH AND MC MoveRbsolute 1.Donclil AND MC MoveRbsolute 3.Done[E THEN
16 MC_MoveRbsolute_0 (Axis:
17 MC_Movedbsolute 1 (Axi
MC_Movelbsolute_2 (Axis:=SM_Drive_GenericDSF402_2 , Execute|
MC Moveibsolute 3(Axis:=SM Drive GenericDSP402 3 , Execute[EENE
iStatus[1 |r=iStatus[1 hl;
END_IF
<

Double-click INVT_DA200_171 from the device panel to view or
mapping interface. See the figure.

set the current motor running parameters in the 1/10

& EthercAT Task [m# SM_Drive_GenericDsP402 PLCPRG [[f] EtherCAT Master_SoftMotion Vi mvT_DA200_171 x -
Fenz] Find Fiter Show all ~ &k Add FB for 10 Channel.. = Go to Instance J
S Variable Mapping Channel Address Type Current Value Prepared Value Unit Description

ER) Control Word %QW22 UINT 15 Control Word
Startup Parameters * KO Target Position %QD12 DINT 205891400 Target Position

+ Ty Target Velocity %QD13 DINT -196608 Target Veladity
EtherCAT1/0 Mapping e Made of Operation %QBS6 SINT 8 Made of Operation
SeETE T +-"g Target torque %QW2e INT 0 Target tarque

E) Touch probe contral %WQW30 UINT 0 Touch probe contral
Status "y Positive torque limit %QW31 UINT 0 Positive torque limit

E] Negtive torque limit %QW32 UINT 0 Negtive torque limit
Lkograin " Max profile velacity %QD17 UDINT 0 Max profil velocity

£] Status Word YIW2 UINT 4919 Status Word

-4y Pasition Actual Value %ID2 DINT 205885807 Position Actual Value

e Speed Actual Value %ID3 DINT ~ -197133 Speed Actual Value

- Torque Actual Value W8 T 46 Torque Actual Value

- Operation Mode Display ~ %I818 SINT 8§ Operation Mode Display

-4 Current Actual Value %W INT 2 Current Actual Value

Eo] Touch Probe Status YaIW 11 UINT 0 Touch Probe Status

L] Touch Probe Value %ID6 DINT 0 Touch Probe Value

E] Digital outputs %ID7 UDINT D Digital outputs

] Digital inputs %ID8 UDINT D Digital inputs

‘ ResebMapping | Alwaysupdatevarisbles |Enabled 2 (sways in bus cycle t2ck)
"’o = Create new variable "% =Mapto existing variable

Select Device > PLCShell. Click the | button at the bottom right corner and select prcload. Then the CPU load rate

of the current controller will be shown as follows.

& EtherCAT Task [## SM_Drive_GenericDSP402 PLCPRG [[f] EtherCAT Master_SoftMotion

[pevice x =

1 mwr_DA200_171

Communication Settings [version

ju-boot V200 kernel V200 rootfs V202
Applications

Backup and Restore

1c1caa
Files °

ELC load average: 30%
Log

CazeD: o
FLESEES ELC Core load: 30%
PLC Shell

Users and Groups

Access Rights

symbol Rights

IEC Objects

Task Deplayment

Status

Information

plcload

-170-

AX series programmable controller software manual Project Instance

To observe the operation of the motor shaft in an intuitive way and track the actual position of the shaft, create a new trace.
Right click Application and select Add Object > Trace. Set the task attribute to EtherCAT_Task, and add
PLC_PRG.MC_Power_0.Axis.fActPosition and PLC_PRG.MC_Power_0.Axis.fActVelocity variables in Trace. Adjust
the display properties of the coordinates appropriately. Right click the graph and select Download Trace to track the
actual position and actual speed of the motor, as shown in the following figure.

§& EtherCAT Task a# SM_Drive_GenericDSP402 PLC_PRG afl Trace x -

4 Configuration
50 Add Varisble

mm PLC_PRG.MC_Power_0.Axis.fActPosition |~
mm PLC_PRG.MC_Power_0.Axis.fActVelocity

ANA

Nz L | T —

30s m 1m30s

i astbuld: @ 0 &0 Precompie + T [NEHEEEI Program loaded Program unchanged Time: 1m49s298ms Value: 38 Trace stopped Project user: {nobady) 1

-171-

([]
ll\"t Service line:86-755-23535967 E-mail:overseas@invt.com.cn Website:www.invt.com

The products are owned by Shenzhen INVT Electric Co.,Ltd.
Two companies are commissioned to manufacture: (For product code, refer to the 2nd/3rd place of S/N on the name plate.)

Shenzhen INVT Electric Co.,Ltd. (origin code: 01) INVT Power Electronics (Suzhou) Co.,Ltd. (origin code: 06)
Address: INVT Guangming Technology Building, Songbai Road, Address: No. 1 Kunlun Mountain Road, Science & Technology
Matian, Guangming District, Shenzhen, China Town, Gaoxin District, Suzhou, Jiangsu, China
Industrial Automation:lMHMI BPLC B VFD B Servo System
B Elevator Intelligent Control System M Rail Transit Traction System
Energy & Power: BUPS EDCIM B Solar Inverter BSVG

B New Energy Vehicle Powertrain System B New Energy Vehicle Charging System

75

B New Energy Vehicle Motor
66001-00759
Copyright© INVT.

Manual information may be subject to change without prior notice. 202111 (V1.2)

	Preface
	Target audience
	Applicable product
	Online support

	Contents
	1 Product Introduction
	1.1 AX70 series programmable controller
	1.1.1 Overview
	1.1.2 Product configuration and module description
	1.1.3 System application process

	1.2 Programming platform
	1.2.1 Invtmatic Studio
	1.2.2 Software programming interface

	1.3 PLCopen specification

	2 Getting Started
	2.1 Software installation and uninstallation
	2.1.1 Software obtaining
	2.1.2 Software installation requirements
	2.1.3 Preparing
	2.1.4 Installing the software
	2.1.5 Uninstalling the software

	2.2 AX70 series hardware connection
	2.3 PC communication configuration
	2.4 Project creation
	2.4.1 Starting the programming environment
	2.4.2 Creating new project

	2.5 Typical steps of project writing
	2.6 Examples of program writing and debugging
	2.6.1 Adding devices
	2.6.2 Writing a function to handle POU
	2.6.3 Setting motor parameters
	2.6.4 Writing motor positive and reverse
	2.6.5 Compiling user program
	2.6.6 Running monitor program

	3 Network Configuration
	3.1 ModbusTCP
	3.1.1 ModbusTCP_Master
	3.1.2 ModbusTCP_Slave

	3.2 ModbusRTU
	3.2.1 ModbusRTU_Master
	3.2.2 ModbusRTU_Slave

	3.3 EtherCAT master node
	3.4 CANopen
	3.4.1 CANopen master node configuration
	3.4.1.1 Master node usage process
	3.4.1.2 Adding CANopen management device
	3.4.1.3 Adding CANopen slave node

	3.4.2 Parameter configuration of CANopen master

	4 Module Configuration
	4.1 CPU module
	4.2 High speed I/O module
	4.2.1 Creating high speed I/O module project
	4.2.2 Function description of input port
	4.2.2.1 Common input function
	4.2.2.2 Counting function
	4.2.2.3 Trigger, latch and Z-signal function
	4.2.2.4 Positive and negative limit zero function
	4.2.2.5 Pulse width measurement function

	4.2.3 Output Port Function Description
	4.2.3.1 Common output function
	4.2.3.2 High speed pulse output function
	4.2.3.3 Output comparison function

	4.2.4 High-speed I/O mapping table
	4.2.4.1 General input value
	4.2.4.2 Version
	4.2.4.3 Input terminal function configuration
	4.2.4.4 Counting mode configuration
	4.2.4.5 Filter parameters
	4.2.4.6 Output terminal function configuration
	4.2.4.7 Common output value
	4.2.4.8 High-speed pulse output function
	4.2.4.9 Global interrupt enable
	4.2.4.10 Interrupt enable
	4.2.4.11 Interrupt mode

	4.2.5 Interrupt instruction
	4.2.5.1 External interrupt instruction
	4.2.5.2 Probe interrupt instruction
	4.2.5.3 Comparison interrupt instruction

	4.3 Digital input/output module
	4.3.1 Creating a project for digital input/output module
	4.3.2 Variable definition and use

	4.4 Analog input/output module
	4.4.1 Creating a project for analog input/output module
	4.4.2 Variable definition and use

	4.5 Temperature module
	4.5.1 Creating a project for temperature module
	4.5.2 Variable definition and use
	4.5.3 Temperature module

	4.6 Communication module
	4.6.1 Digital input module
	4.6.2 Digital output module
	4.6.3 Analog input module
	4.6.4 Analog output module
	4.6.5 Temperature module

	4.7 Priority setting of each module (recommended value)
	4.7.1 Setting priority
	4.7.2 Configuring sub-device bus cycle options

	5 Device Diagnosis
	5.1 Fault indicator
	5.1.1 System and bus fault indicator
	5.1.2 High-speed input/output indicator

	5.2 Fault code

	6 Controller Program Structure and Execution
	6.1 Program structure
	6.2 Task
	6.3 Program execution
	6.4 Task execution type
	6.5 Task priority
	6.6 Operation of multiple subprograms

	7 EtherCAT Bus Motion Control
	7.1 EtherCAT operation principle
	7.1.1 Protocol introduction
	7.1.2 Work counter WKC
	7.1.3 Addressing mode
	7.1.3.1 Segment addressing
	7.1.3.2 Device addressing

	7.1.4 Distributed clocks
	7.1.4.1 Concepts
	7.1.4.2 Clock synchronization process

	7.1.5 EtherCAT cable redundancy

	7.2 EtherCAT communication mode
	7.2.1 Periodic process data communication
	7.2.2 Non-periodic mailbox data communication

	7.3 EtherCAT state machine
	7.4 EtherCAT servo drive controller application protocol
	7.4.1 EtherCAT-based CAN application protocol (CoE)
	7.4.1.1 CoE object dictionary
	7.4.1.2 CoE periodic process data communication (PDO)
	7.4.1.3 CoE non-periodic process data communication (SDO)

	7.4.2 Servo drive profile according to IEC 61800-7-204 (SERCOS)
	7.4.2.1 SoE state machine
	7.4.2.2 IDN inheritance
	7.4.2.3 SoE periodic process data
	7.4.2.4 SoE non-periodic service channels

	8 Application Programming
	8.1 Single axis control
	8.1.1 Single axis control programming description
	8.1.2 MC function blocks commonly used for single-axis control

	8.2 Cam synchronization control
	8.2.1 Periodic mode of the cam table
	8.2.2 Input method of cam table
	8.2.3 Data structure of cam table
	8.2.4 CAM table reference and switch

	Appendix A Function module command
	A.1 ModbusRTU command library
	A.1.1 Definition and use of ModbusRTU master command library variables
	A.1.1.1 Variable definition
	A.1.1.2 How to use

	A.1.2 Definition and use of ModbusRTU slave library variables
	A.1.2.1 Variable definition
	A.1.2.2 How to use

	A.2 ModbusTCP command library
	A.2.1 Definition and use of ModbusTCP master command library variables
	A.2.1.1 Variable definition
	A.2.1.2 How to use

	A.2.2 Definition and use of ModbusTCP slave command library variables
	A.2.2.1 Variable definition
	A.2.2.2 How to use

	A.3 CmpHSIO_C library description
	A.3.1 Counter_HP
	A.3.1.1 Single pulse counting
	A.3.1.2 Quadrature encoder pulses
	A.3.1.3 Timing counting
	A.3.1.4 Pulse + direction counting

	A.3.2 LatchValue_HP
	A.3.2.1 Function configuration
	A.3.2.2 Time sequence description

	A.3.3 PresetValue_HP
	A.3.3.1 Function configuration
	A.3.3.2 Time sequence description

	A.3.4 PulsewidthMeasure_HP
	A.3.4.1 Function configuration
	A.3.4.2 Time sequence description

	A.3.5 SetCompareInterruptParam_HP
	A.3.5.1 Function configuration

	A.3.6 TimingSampling_HP
	A.3.6.1 Function configuration
	A.3.6.2 Time sequence description

	A.3.7 CompareSingleValue_HP
	A.3.7.1 Function configuration
	A.3.7.2 Time sequence description

	A.3.8 CompareMoreValue_HP
	A.3.8.1 Function configuration
	A.3.8.2 Time sequence description

	A.3.9 GetVersion_HP
	A.3.10 Zphase_Clearpulse_HP
	A.3.10.1 Function configuration
	A.3.10.2 Time sequence description

	A.3.11 Zphase_Compensate_HP
	A.3.11.1 Function configuration
	A.3.11.2 Time sequence description

	Appendix B Project Instance
	B.1 Controller and Goodrive20 Series VFD Configuration Example
	B.2 Controller and DA200 Series Servo Drive Configuration Example
	转曲封底
	页 1

	转曲封面
	页 1

